The advancement in large-scale underground excavation in urban areas necessitates monitoring and predicting technologies that can pre-emptively mitigate risk factors at construction sites. Traditionally, two methods predict the deformation of retaining walls induced by excavation: empirical and numerical analysis. Recent progress in artificial intelligence technology has led to the development of a predictive model using machine learning techniques. This study developed a model for predicting the deformation of a retaining wall under construction using a boosting-based algorithm and an ensemble model with outstanding predictive power and efficiency. A database was established using the data from the design-construction-maintenance process of the underground retaining wall project in a manifold manner. Based on these data, a learning model was created, and the performance was evaluated. The boosting and ensemble models demonstrated that wall deformation could be accurately predicted. In addition, it was confirmed that prediction results with the characteristics of the actual construction process can be presented using data collected from ground measurements. The predictive model developed in this study is expected to be used to evaluate and monitor the stability of retaining walls under construction.
Centrifuge tests have shown that a uniformly placed sand layer will first initiate liquefaction near the surface and that liquefaction will progress downward during shaking. This appears to be in conflict with the overburden stress effect on soil liquefaction (i.e., $K_0$ effect) observed in laboratory testing. This discrepancy can be explained by stress-induced densification at depth which overcomes the effect of confining stress on liquefaction resistance. Stress densification occurs in centrifuge model tests but its effect has generally not been considered when preparing or evaluating centrifuge models. A new centrifuge model preparation method is proposed by considering stress-induced densification upon spin-up. The proposed method can be used to explore $K_0$ effects. The method is supported in this study by numerical predictions.
Park, Hyo-Keun;Choi, Jin-Ho;Kweon, Jin-Hwe;Lee, Young-Hwan;Yang, Seung-Un;Kim, Dong-Hyun
Composites Research
/
v.19
no.6
/
pp.8-15
/
2006
In this study, computational rotor dynamic analyses of a composite roller used for large LCD panel manufacturing process have been conducted. The present computational method is based on the general finite element method with rotating gyroscopic effects of rotor systems. General purpose commercial finite element code, SAMCEF which has special rotordynamics analysis module is applied. For the purpose of numerical verification, comparison study for a benchmark dual rotor model with support bearings is also presented. Detailed finite element models for composite roller with optimized lamination angles are constructed and analyzed considering gravity effect in order to investigate vibration characteristics in actual operation environment. As results of the present study, rotor stability diagrams and mass unbalance responses are presented for different rotating conditions.
Journal of the Korea Society of Computer and Information
/
v.14
no.8
/
pp.1-9
/
2009
In this paper, make a study decision problem called an optimal release policies after testing a software system in development phase and transfer it to the user. When correcting or modifying the software, because of the possibility of introducing new faults when correcting or modifying the software, infinite failure non-homogeneous Poisson process models presented and propose an optimal release policies of the life distribution applied fixed shape parameter distribution which can capture the increasing/decreasing nature of the failure occurrence rate per fault. In this paper, discuss optimal software release policies which minimize a total average software cost of development and maintenance under the constraint of satisfying a software reliability requirement. In a numerical example, after trend test applied and estimated the parameters using maximum likelihood estimation of inter-failure time data, make out estimating software optimal release time
Pressure relief valve (PRV) is one of the important control valves used in nuclear power plants, and its sealing performance is crucial to ensure the safety and function of the entire pressure system. For the sealing performance improving purpose, an explicit function that accounts for all design parameters and can accurately describe the relationship between the multi-design parameters and the seal performance is essential, which is also the challenge of the valve seal design and/or optimization work. On this basis, a surrogate model-based design optimization is carried out in this paper. To obtain the basic data required by the surrogate model, both the Finite Element Model (FEM) and the Computational Fluid Dynamics (CFD) based numerical models were successively established, and thereby both the contact stresses of valve static sealing and dynamic impact (between valve disk and nozzle) could be predicted. With these basic data, the polynomial chaos expansion (PCE) surrogate model which can not only be used for inputs-outputs relationship construction, but also produce the sensitivity of different design parameters were developed. Based on the PCE surrogate model, a new design scheme was obtained after optimization, in which the valve sealing stress is increased by 24.42% while keeping the maximum impact stress lower than 90% of the material allowable stress. The result confirms the ability and feasibility of the method proposed in this paper, and should also be suitable for performance design optimizations of control valves with similar structures.
To deeply probe the actual earthquake level and fragility of typical reinforced concrete (RC) structures under multiple intensity grades, considering diachronic measurement building stock samples and actual observations of representative catastrophic earth shocks in China from 1990 to 2010, RC structures were divided into traditional RC structures (TRCs) and bottom reinforced concrete frame seismic wall masonry (BFM) structures, and the empirical damage characteristics and mechanisms were analysed. A great deal of statistics and induction were developed on the historical experience investigation data of 59 typical catastrophic earthquakes in 9 provinces of China. The database and fragility matrix prediction model were established with TRCs of 4,122.5284×104 m2 and 5,844 buildings and BFMs of 5,872 buildings as empirical seismic damage samples. By employing the methods of structural damage probability and statistics, nonlinear prediction of seismic vulnerability, and numerical and applied functional analysis, the comparison matrix of actual fragility probability prediction of TRC and BFM in multiple intensity regions under the latest version of China's macrointensity standard was established. A novel nonlinear regression prediction model of seismic vulnerability was proposed, and prediction models considering the seismic damage ratio and transcendental probability parameters were constructed. The time-varying vulnerability comparative model of the sample database was developed according to the different periods of multiple earthquakes. The new calculation method of the average fragility prediction index (AFPI) matrix parameter model has been proposed to predict the seismic fragility of an areal RC structure.
Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
/
v.8
no.3
/
pp.57-67
/
2018
The ensemble is a unified approach used for getting better performance by using multiple algorithms in machine learning. In this paper, we introduce boosting and bagging, which have been widely used in ensemble techniques, and design a method using support vector regression, radial basis function network, Gaussian process, and multilayer perceptron. In addition, our experiment was performed by adding a recurrent neural network and MOHID numerical model. The drifter data used for our experimental verification consist of 683 observations in seven regions. The performance of our ensemble technique is verified by comparison with four algorithms each. As verification, mean absolute error was adapted. The presented methods are based on ensemble models using bagging, boosting, and machine learning. The error rate was calculated by assigning the equal weight value and different weight value to each unit model in ensemble. The ensemble model using machine learning showed 61.7% improvement compared to the average of four machine learning technique.
The principal objective of this study was to determine the optimal mixing conditions for three amounts of onion powder, sugar, and butter to prepare onion powder cookies. The experimental design was based on the central composite design methodology of response surface, which included 16 experimental points including two replicates for onion powder, sugar, and butter. The mechanical and sensory properties of the cookies were measured, and these values were applied to the mathematical models. A canonical form and perturbation plot showed the influence of each ingredient on the mixed final product. The results of the spread ratio did not show significant results, but hardness increased with increasing quantities of onion powder and sugar but decreased with butter (p<0.01). The color lightness "L" value increased with increasing quantities of sugar and butter but decreased with added onion powder. In contrast, the redness color "a" value increased with increasing quantities of onion powder and sugar. Sugar did not affect the yellowness color "b" value, but the color b value increased with increasing onion powder and sugar. The results of a sensory evaluation using the predicted model showed significant values for flavor (p<0.01), texture (p<0.05), taste (p<0.05), and overall quality (p<0.01). As a result, the optimum formulation by numerical and graphical methods was calculated as 12.58 g onion powder, 35 g sugar, and 52.38 g butter.
The current paper discusses the dynamic and stability responses of cross-ply composite laminated plates by employing a refined quasi-3D trigonometric shear deformation theory. The proposed theory takes into consideration shear deformation and thickness stretching by a trigonometric variation of in-plane and transverse displacements through the plate thickness and assures the vanished shear stresses conditions on the upper and lower surfaces of the plate. The strong point of the new formulation is that the displacements field contains only 4 unknowns, which is less than the other shear deformation theories. In addition, the present model considers the thickness extension effects (εz≠0). The presence of the Winkler-Pasternak elastic base is included in the mathematical formulation. The Hamilton's principle is utilized in order to derive the four differentials' equations of motion, which are solved via Navier's technique of simply supported structures. The accuracy of the present 3-D theory is demonstrated by comparing fundamental frequencies and critical buckling loads numerical results with those provided using other models available in the open literature.
KSCE Journal of Civil and Environmental Engineering Research
/
v.26
no.5C
/
pp.359-368
/
2006
After construction, time-variant seepage and long-term underground motion are representative factors to understand the abnormal behavior of tunnels. In this study, numerical models have been developed to analyze the behavior of tunnels associated with seepage and long-term underground motion. Possible scenarios have been investigated to establish causes-and-results mechanisms. Various parameters such as permeability of tunnel filter, seepage condition, water table, long-term rock mass load, size of damaged zone due to excessive blasting have been investigated. These are divided into two sub-parts depending on the tunnel type and major loading mechanisms depending on the types. For the soft ground tunnels, the behavior associated with seepage conditions has been studied and the effect of permeability change in tunnel-filter and the effect of water-table change which are seldom measurable are investigated in detail. For the rock mass tunnels, tunnel behavior associated with the visco-plastic behavior of rock mass has been studied and the long-term rock mass loads as a result of relaxation and creep have been considered.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.