• Title/Summary/Keyword: Numerical models

Search Result 4,293, Processing Time 0.037 seconds

Heat Flux Measurements in High Velocity Oxygen-Fuel Torch Flow for Testing High Thermal Materials (고온 재료 테스트를 위한 고속 산소 연료 토치 흐름에서의 열유속 측정)

  • Chinnaraj, Rajesh Kumar;Choi, Seong Man;Hong, Seong Min
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.2
    • /
    • pp.34-41
    • /
    • 2021
  • A commercial HVOF torch (originally designed for coating applications) has been modified as a high temperature flow source for material testing. In this study, a water cooled commercial Gardon gauge was used to measure heat fluxes at four locations away from the nozzle exit. The cooling water temperature data were used to calculate calorimetric heat fluxes at the same locations. The heat fluxes from both methods were compared and the calorimetric heat fluxes were found to be many times higher than the Gardon gauge heat fluxes. A hypothesis is applied to the calorimetric method to understand the discrepancy seen between the methods. The Gardon gauge heat fluxes are seen to be in the range of the hypothesized calorimetric calculations. This can be considered as a considerable validation for the hypothesis, but further refinement needed using appropriate numerical models.

Induced Charge Distribution Using Accelerated Uzawa Method (가속 Uzawa 방법을 이용한 유도전하계산법)

  • Kim, Jae-Hyun;Jo, Gwanghyun;Ha, Youn Doh
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.4
    • /
    • pp.191-197
    • /
    • 2021
  • To calculate the induced charge of atoms in molecular dynamics, linear equations for the induced charges need to be solved. As induced charges are determined at each time step, the process involves considerable computational costs. Hence, an efficient method for calculating the induced charge distribution is required when analyzing large systems. This paper introduces the Uzawa method for solving saddle point problems, which occur in linear systems, for the solution of the Lagrange equation with constraints. We apply the accelerated Uzawa algorithm, which reduces computational costs noticeably using the Schur complement and preconditioned conjugate gradient methods, in order to overcome the drawback of the Uzawa parameter, which affects the convergence speed, and increase the efficiency of the matrix operation. Numerical models of molecular dynamics in which two gold nanoparticles are placed under external electric fields reveal that the proposed method provides improved results in terms of both convergence and efficiency. The computational cost was reduced by approximately 1/10 compared to that for the Gaussian elimination method, and fast convergence of the conjugate gradient, as compared to the basic Uzawa method, was verified.

The Analysis of Single Piles in Weathered Soil with and without Ground Water Table under the Dynamic Condition (지진 시 풍화지반(건조/포화)에 근입된 단말뚝의 동적거동 분석)

  • Song, Su-Min;Park, Jong-Jeon;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.1
    • /
    • pp.17-33
    • /
    • 2022
  • This study describes the effect of ground water table on the dynamic analysis of single piles subjected to earthquake loading. The dynamic numerical analysis was performed for different dry and saturated soils with varying the relative densities of surrounding weathered soils (SM). The test soil was a weathered soil encountered in the engineering field and bender element tests were conducted to estimate the dynamic properties of test soil. The Mohr-Coulomb model and Finn model were used for soil, dry and saturated conditions, respectively. These models validated with results of centrifuge tests. When compared with the results from the soil conditions, saturated cases showed more lateral displacement and bending moment of piles than dry cases, and this difference caused from the generation of excess porewater pressure. It means that the kinematic effect of the soil decreased as the excess pore water pressure was generated, and it was changed to the inertial behavior of the pile.

The Analysis of COVID-19 Pooled-Testing Systems with False Negatives Using a Queueing Model (대기행렬을 이용한 위음성률이 있는 코로나 취합검사 시스템의 분석)

  • Kim, Kilhwan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.4
    • /
    • pp.154-168
    • /
    • 2021
  • COVID-19 has been spreading all around the world, and threatening global health. In this situation, identifying and isolating infected individuals rapidly has been one of the most important measures to contain the epidemic. However, the standard diagnosis procedure with RT-PCR (Reverse Transcriptase Polymerase Chain Reaction) is costly and time-consuming. For this reason, pooled testing for COVID-19 has been proposed from the early stage of the COVID-19 pandemic to reduce the cost and time of identifying the COVID-19 infection. For pooled testing, how many samples are tested in group is the most significant factor to the performance of the test system. When the arrivals of test requirements and the test time are stochastic, batch-service queueing models have been utilized for the analysis of pooled-testing systems. However, most of them do not consider the false-negative test results of pooled testing in their performance analysis. For the COVID-19 RT-PCR test, there is a small but certain possibility of false-negative test results, and the group-test size affects not only the time and cost of pooled testing, but also the false-negative rate of pooled testing, which is a significant concern to public health authorities. In this study, we analyze the performance of COVID-19 pooled-testing systems with false-negative test results. To do this, we first formulate the COVID-19 pooled-testing systems with false negatives as a batch-service queuing model, and then obtain the performance measures such as the expected number of test requirements in the system, the expected number of RP-PCR tests for a test sample, the false-negative group-test rate, and the total cost per unit time, using the queueing analysis. We also present a numerical example to demonstrate the applicability of our analysis, and draw a couple of implications for COVID-19 pooled testing.

Effective study of operating parameters on the membrane distillation processes using various materials for seawater desalination

  • Sandid, Abdelfatah Marni;Neharia, Driss;Nehari, Taieb
    • Membrane and Water Treatment
    • /
    • v.13 no.5
    • /
    • pp.235-243
    • /
    • 2022
  • The paper presents the effect of operating temperatures and flow rates on the distillate flux that can be obtained from a hydrophobic membrane having the characteristics: pore size of 0.15 ㎛; thickness of 130 ㎛; and 85% porosity. That membrane in the present investigation could be the direct contact (DCMD) or the air-gap membrane distillation (AGMD). To model numerically the membrane distillation processes, the two-dimensional computational fluid dynamic (CFD) is used for the DCMD and AGMD cases here. In this work, DCMD and AGMD models have been validated with the experimental data using different flows (Parallel and Counter-current flows) in non-steady-state situations. A good agreement is obtained between the present results and those of the experimental data in the literature. The new approach in the present numerical modeling has allowed examining effects of the nature of materials (Polyvinylidene fluoride (PVDF) polymers, copolymers, and blends) used on thermal properties. Moreover, the effect of the area surface of the membrane (0.021 to 3.15 ㎡) is investigated to explore both the laminar and the turbulent flow regimes. The obtained results found that copolymer P(VDF-TrFE) (80/20) is more effective than the other materials of membrane distillation (MD). The mass flux and thermal efficiency reach 193.5 (g/㎡s), and 83.29 % using turbulent flow and an effective area of 3.1 ㎡, respectively. The increase of feed inlet temperatures and its flow rate, with the reduction of cold temperatures and its flow rate are very effective for increasing distillate water flow in MD applications.

Empirical seismic fragility rapid prediction probability model of regional group reinforced concrete girder bridges

  • Li, Si-Qi;Chen, Yong-Sheng;Liu, Hong-Bo;Du, Ke
    • Earthquakes and Structures
    • /
    • v.22 no.6
    • /
    • pp.609-623
    • /
    • 2022
  • To study the empirical seismic fragility of a reinforced concrete girder bridge, based on the theory of numerical analysis and probability modelling, a regression fragility method of a rapid fragility prediction model (Gaussian first-order regression probability model) considering empirical seismic damage is proposed. A total of 1,069 reinforced concrete girder bridges of 22 highways were used to verify the model, and the vulnerability function, plane, surface and curve model of reinforced concrete girder bridges (simple supported girder bridges and continuous girder bridges) considering the number of samples in multiple intensity regions were established. The new empirical seismic damage probability matrix and curve models of observation frequency and damage exceeding probability are developed in multiple intensity regions. A comparative vulnerability analysis between simple supported girder bridges and continuous girder bridges is provided. Depending on the theory of the regional mean seismic damage index matrix model, the empirical seismic damage prediction probability matrix is embedded in the multidimensional mean seismic damage index matrix model, and the regional rapid prediction matrix and curve of reinforced concrete girder bridges, simple supported girder bridges and continuous girder bridges in multiple intensity regions based on mean seismic damage index parameters are developed. The established multidimensional group bridge vulnerability model can be used to quantify and predict the fragility of bridges in multiple intensity regions and the fragility assessment of regional group reinforced concrete girder bridges in the future.

Sintering process optimization of ZnO varistor materials by machine learning based metamodel (기계학습 기반의 메타모델을 활용한 ZnO 바리스터 소결 공정 최적화 연구)

  • Kim, Boyeol;Seo, Ga Won;Ha, Manjin;Hong, Youn-Woo;Chung, Chan-Yeup
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.6
    • /
    • pp.258-263
    • /
    • 2021
  • ZnO varistor is a semiconductor device which can serve to protect the circuit from surge voltage because its non-linear I-V characteristics by controlling the microstructure of grain and grain boundaries. In order to obtain desired electrical properties, it is important to control microstructure evolution during the sintering process. In this research, we defined a dataset composed of process conditions of sintering and relative permittivity of sintered body, and collected experimental dataset with DOE. Meta-models can predict permittivity were developed by learning the collected experimental dataset on various machine learning algorithms. By utilizing the meta-model, we can derive optimized sintering conditions that could show the maximum permittivity from the numerical-based HMA (Hybrid Metaheuristic Algorithm) optimization algorithm. It is possible to search the optimal process conditions with minimum number of experiments if meta-model-based optimization is applied to ceramic processing.

A Calibration Method of the CSC Model for Considering Material Properties of Ultra-high Performance Concrete (초고성능 강섬유 보강 콘크리트 물성 반영을 위한 소성 기반 콘크리트 CSC 모델 보정기법)

  • Gang-Kyu, Park;MinJoo, Lee;Sung-Wook, Kim;Hyun-Seop, Shin;Jae Heum, Moon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.402-410
    • /
    • 2022
  • The present study introduces a calibration method of the CSC model implemented in the LS-DYNA program for considering the material properties of ultra-high performance concrete(UHPC). Based on previous experimental studies, various parameters, which constitute three shear failure surfaces, pressure-volumetric strain curve, fracture energy, dynamic increase factor(DIF), and so on, are modified. Then, the proposed calibration method is verified by comparing the numerical result with the experimental data through the single element analysis. In addition, based on the established finite element models, the applicability of the calibrated CSC model is examined for UHPC structures subjected to impact and blast loadings.

Ventilation Hole Optimum Design of Smart Unit Load Container for Storage and Distribution Agricultural Products by Theoretical Heat Flow Analysis (이론적 열유동 해석을 이용한 농산물 저장 및 유통 스마트 유닛로드 컨테이너의 통기공 최적화 설계)

  • Dong-Soo, Choi;Yong-Hoon, Kim;Jin-SE, Kim;Chun-Wan, Park;Hyun-Mo, Jung;Ghi-Seok, Kim;Jong-Min, Park
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.28 no.3
    • /
    • pp.211-215
    • /
    • 2022
  • Air distribution occupies an important position in the smart unit load container design process for agricultural products. Inner air may be uncomfortable because of its temperature, speed, direction, and volume flow rate. It doesn't matter how efficient the ventilation equipment is if the air is not distributed well. The main aim of this study was to design the inlet and outlet fan locations of smart unit load container for agricultural products. A numerical study was performed on the effects of the location of inlet air and outlet air in relation to the container cooling sources on air distribution and thermal comfort. A concept of combining inner container cooling sources with the exhaust outlet was employed in this investigation. Also, in this research, the developed CFD (Computational Fluid Dynamics) models were thoroughly validated. This system was adopted for use in container spaces, where the exhaust outlet was located. In this study, the location of the inlet was derived through CFD for a container with a size of 1,100×1,100×1,700 mm, and it was derived that the inlet was located at the center of the lower part of the container for efficient air flow. It was efficient to position the outlet through the air inlet in the center of the lower part of the container at the top of the same side.

Failure probability of tall buildings with TMD in the presence of structural, seismic, and soil uncertainties

  • Sadegh, Etedali;Mohammad, Seifi;Morteza, Akbari
    • Structural Engineering and Mechanics
    • /
    • v.85 no.3
    • /
    • pp.381-391
    • /
    • 2023
  • The seismic performance of the tall building equipped with a tuned mass damper (TMD) considering soil-structure interaction (SSI) effects is well studied in the literature. However, these studies are performed on the nominal model of the seismic-excited structural system with SSI. Hence, the outcomes of the studies may not valid for the actual structural system. To address the study gap, the reliability theory as a useful and powerful method is utilized in the paper. The present study aims to carry out reliability analyses on tall buildings equipped with TMD under near-field pulse-like (NFPL) ground motions considering SSI effects using a subset simulation (SS) method. In the presence of uncertainties of the structural model, TMD device, foundation, soil, and near-field pulse-like ground motions, the numerical studies are performed on a benchmark 40-story building and the failure probabilities of the structures with and without TMD are evaluated. Three types of soils (dense, medium, and soft soils), different earthquake magnitudes (Mw = 7,0. 7,25. 7,5 ), different nearest fault distances (r = 5. 10 and 15 km), and three seismic performance levels of immediate occupancy (IO), life safety (LS), and collapse prevention (CP) are considered in this study. The results show that tall buildings built near faults and on soft soils are more affected by uncertainties of the structural and ground motion models. Hence, ignoring these uncertainties may result in an inaccurate estimation of the maximum seismic responses. Also, it is found the TMD is not able to reduce the failure probabilities of the structure in the IO seismic performance level, especially for high earthquake magnitudes and structures built near the fault. However, TMD is significantly effective in the reduction of failure probability for the LS and CP performance levels. For weak earthquakes and long fault distances, the failure probabilities of both structures with and without TMD are near zero, and the efficiency of the TMD in the reduction of failure probabilities is reduced by increasing earthquake magnitudes and the reduction of fault distance. As soil softness increases, the failure probability of structures both with and without TMD often increases, especially for severe near-fault earthquake motion.