DOI QR코드

DOI QR Code

Heat Flux Measurements in High Velocity Oxygen-Fuel Torch Flow for Testing High Thermal Materials

고온 재료 테스트를 위한 고속 산소 연료 토치 흐름에서의 열유속 측정

  • Chinnaraj, Rajesh Kumar (High-Enthalpy Plasma Research Center, Jeonbuk National University) ;
  • Choi, Seong Man (High-Enthalpy Plasma Research Center, Jeonbuk National University) ;
  • Hong, Seong Min (High-Enthalpy Plasma Research Center, Jeonbuk National University)
  • Received : 2020.07.24
  • Accepted : 2021.02.06
  • Published : 2021.04.30

Abstract

A commercial HVOF torch (originally designed for coating applications) has been modified as a high temperature flow source for material testing. In this study, a water cooled commercial Gardon gauge was used to measure heat fluxes at four locations away from the nozzle exit. The cooling water temperature data were used to calculate calorimetric heat fluxes at the same locations. The heat fluxes from both methods were compared and the calorimetric heat fluxes were found to be many times higher than the Gardon gauge heat fluxes. A hypothesis is applied to the calorimetric method to understand the discrepancy seen between the methods. The Gardon gauge heat fluxes are seen to be in the range of the hypothesized calorimetric calculations. This can be considered as a considerable validation for the hypothesis, but further refinement needed using appropriate numerical models.

상업용 HVOF 토치 (원래 코팅 용도로 설계됨)가 재료 테스트를 위한 고온 유동원으로 수정되었다. 이 연구에서는 수냉식 상용 Gardon 게이지를 사용하여 노즐 출구에서 떨어진 네 위치에서 열유속을 측정하였다. 냉각수 온도 데이터는 동일한 위치에서 열량 측정 열유속 (calorimetric heat flux)을 계산하는 데 사용되었다. 두 방법의 열유속을 비교 한 결과 열량 측정 열유속이 Gardon 게이지 열유속보다 몇 배 더 높은 것으로 나타났다. 두 가지 방법 사이에 나타나는 불일치를 이해하기 위해 열량 측정방법에 대한 가설을 적용하였다. 이것은 가설에 대한 상당한 검증으로 간주될 수 있지만 적절한 수치모델을 사용하여 추가 개선이 필요하다.

Keywords

Acknowledgement

This research was supported by Korea Basic Science Institute (National Research Facilities and Equipment Center) grant funded by the Ministry of Education (2019R1A6C1030013).

References

  1. Fahrenholtz WG, and Hilmas, G. E. (2017) Ultra-High Temperature Ceramics: Materials for Extreme Environments. Scripta Materialia 129:94-99 https://doi.org/10.1016/j.scriptamat.2016.10.018
  2. Chinnaraj RK, Oh PY, Shin ES, Hong BG, Choi SM (2019) Mach Number Determination in a High-Enthalpy Supersonic Arc-Heated Plasma Wind Tunnel. International Journal of Aeronautical and Space Sciences 20 (1):70-79. doi:10.1007/s42405-018-0128-x
  3. Bottin B, Chazot, O., et. al. (October 1999) The VKI Plasmatron Characteristics and Performance. In: RTO AVT Course on Measurement Techniques for High Enthalpy and Plasma Flows, RTO EN-8. Rhode-Saint-Gen'ese, Belgium, pp. 6-01 - 06-26
  4. Pienti L, Sciti D, Silvestroni L, Cecere A, Savino R (2015) Ablation tests on HfCand TaC-based ceramics for aeropropulsive applications. Journal of the European Ceramic Society 35 (5):1401-1411. doi:https://doi.org/10.1016/j.jeurceramsoc.2014.11.018
  5. Xiang L, Cheng L, Fan X, Shi L, Yin X, Zhang L (2015) Effect of interlayer on the ablation properties of laminated HfC-SiC ceramics under oxyacetylene torch. Corrosion Science 93:172-179. doi: https://doi.org/10.1016/j.corsci.2015.01.021
  6. Wang Y-l, Xiong X, Zhao X-j, Li G-d, Chen Z-k, Sun W (2012) Structural evolution and ablation mechanism of a hafnium carbide coating on a C/C composite in an oxyacetylene torch environment. Corrosion Science 61:156-161. doi:https://doi.org/10.1016/j.corsci.2012.04.033
  7. Chinnaraj RK, Jang HS, Oh PY, Hong SM, Choi SM (2020) Flow Characteristics of High Velocity Oxygen Fuel Torch. Journal of The Korean Society Combustion 25 (1):12-18. doi:10.15231/jksc.2020.25.1.012
  8. Chinnaraj RK, Hong SM, Kim HS, Oh PY, Choi SM (2020), Ablation Experiments of Ultra-High-Temperature Ceramic Coating on Carbon-Carbon Composite Using ICP Plasma Wind Tunnel, International Journal of Aeronautical and Space Sciences, 21(4), 889-905, doi:10.1007/s42405-020-00267-6
  9. Gardon R. (1953) An Instrument for the Direct Measurement of Intense Thermal Radiation. Review of Scientific Instruments 24 (5):366-370. doi:10.1063/1.1770712
  10. Schlichting H., and Gersten, K. (2017) Boundary-Layer Theory. 9 edn. Springer-Verlag, Berlin Heidelberg, p. 212.