• 제목/요약/키워드: Numerical algorithm

검색결과 4,146건 처리시간 0.031초

A new PSRO algorithm for frequency constraint truss shape and size optimization

  • Kaveh, A.;Zolghadr, A.
    • Structural Engineering and Mechanics
    • /
    • 제52권3호
    • /
    • pp.445-468
    • /
    • 2014
  • In this paper a new particle swarm ray optimization algorithm is proposed for truss shape and size optimization with natural frequency constraints. These problems are believed to represent nonlinear and non-convex search spaces with several local optima and therefore are suitable for examining the capabilities of new algorithms. The proposed algorithm can be viewed as a hybridization of Particle Swarm Optimization (PSO) and the recently proposed Ray Optimization (RO) algorithms. In fact the exploration capabilities of the PSO are tried to be promoted using some concepts of the RO. Five numerical examples are examined in order to inspect the viability of the proposed algorithm. The results are compared with those of the PSO and some other existing algorithms. It is shown that the proposed algorithm obtains lighter structures in comparison to other methods most of the time. As will be discussed, the algorithm's performance can be attributed to its appropriate exploration/exploitation balance.

Development of energy based Neuro-Wavelet algorithm to suppress structural vibration

  • Bigdeli, Yasser;Kim, Dookie
    • Structural Engineering and Mechanics
    • /
    • 제62권2호
    • /
    • pp.237-246
    • /
    • 2017
  • In the present paper a new Neuro-Wavelet control algorithm is proposed based on a cost function to actively control the vibrations of structures under earthquake loads. A wavelet neural network (WNN) was developed to train the control algorithm. This algorithm is designed to control multi-degree-of-freedom (MDOF) structures which consider the geometric and material non-linearity, structural irregularity, and the incident direction of an earthquake load. The training process of the algorithm was performed by using the El-Centro 1940 earthquake record. A numerical model of a three dimensional (3D) three story building was used to accredit the control algorithm under three different seismic loads. Displacement responses and hysteretic behavior of the structure before and after the application of the controller showed that the proposed strategy can be applied effectively to suppress the structural vibrations.

Prediction-based Interacting Multiple Model Estimation Algorithm for Target Tracking with Large Sampling Periods

  • Ryu, Jon-Ha;Han, Du-Hee;Lee, Kyun-Kyung;Song, Taek-Lyul
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권1호
    • /
    • pp.44-53
    • /
    • 2008
  • An interacting multiple model (IMM) estimation algorithm based on the mixing of the predicted state estimates is proposed in this paper for a right continuous jump-linear system model different from the left-continuous system model used to develop the existing IMM algorithm. The difference lies in the modeling of the mode switching time. Performance of the proposed algorithm is compared numerically with that of the existing IMM algorithm for noisy system identification. Based on the numerical analysis, the proposed algorithm is applied to target tracking with a large sampling period for performance comparison with the existing IMM.

AESOPS 알고리즘의 고유치 반복계산식과 고유치 초기값 선정의 효율적인 개선에 관한 연구 (An Efficient Improvement of the Iterative Eigenvalue Calculation Method and the Selection of Initial Values in AESOPS Algorithm)

  • 김덕영;권세혁
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권11호
    • /
    • pp.1394-1400
    • /
    • 1999
  • This paper presents and efficient improvement of the iterative eigenvalue calculation method and the selection of initial values in AESOPS algorithm. To determine the initial eigenvalues of the system, system state matrix is constructed with the two-axis generator model. From the submatrices including synchronous and damping coefficients, the initial eigenvalues are calculated by the QR method. Participation factors are also calculated from the above submatrices in order to determine the generators which have a important effect to the specific oscillation mode. Also, the heuristically approximated eigenvalue calculation method in the AESOPS algorithm is transformed to the Newton Raphson Method which is largely used in the nonlinear numerical analysis. The new methods are developed from the AESOPS algorithm and thus only a few calculation steps are added to practice the proposed algorithm.

  • PDF

Robust System Identification Algorithm Using Cross Correlation Function

  • Takeyasu, Kazuhiro;Amemiya, Takashi;Goto, Hiroyuki;Masuda, Shiro
    • Industrial Engineering and Management Systems
    • /
    • 제1권1호
    • /
    • pp.79-86
    • /
    • 2002
  • This paper proposes a new algorithm for estimating ARMA model parameters. In estimating ARMA model parameters, several methods such as generalized least square method, instrumental variable method have been developed. Among these methods, the utilization of a bootstrap type algorithm is known as one of the effective approach for the estimation, but there are cases that it does not converge. Hence, in this paper, making use of a cross correlation function and utilizing the relation of structural a priori knowledge, a new bootstrap algorithm is developed. By introducing theoretical relations, it became possible to remove terms, which is liable to include much noise. Therefore, this leads to robust parameter estimation. It is shown by numerical examples that using this algorithm, all simulation cases converge while only half cases succeeded with the previous one. As for the calculation time, judging from the fact that we got converged solutions, our proposed method is said to be superior as a whole.

AESOPS 알고리즘의 고유치 반복계산식과 Newton Raphson법과의 비교연구 (A comparative study on the iterative eigenvalue calculation method in AESOPS algorithm and Newton Raphson Method)

  • 김덕영;권세혁
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부A
    • /
    • pp.259-262
    • /
    • 1998
  • This paper presents a new eigenvalue calculation methods in AESOPS algorithm. The source program of the AESOPS algorithm is modified to practice in PC environment. Window95 is used as an operating system of PC and MicroSoft Power Station is used to compile the fortran source program. The heuristically approximated eigenvalue calculation method of the AESOPS algorithm is transformed to the Newton Raphson Method which is largely used in the nonlinear numerical analysis. The new methods are developed from the AESOPS algorithm and thus only a few calculation steps are added to practice the proposed algorithm.

  • PDF

A Modified Heuristic Algorithm for the Mixed Model Assembly Line Balancing

  • 이성열
    • 한국산업정보학회논문지
    • /
    • 제15권3호
    • /
    • pp.59-65
    • /
    • 2010
  • This paper proposes a modified heuristic mixed model assembly line (MMAL) balancing algorithm that provides consistent station assignments on a model by model basis as well as on a station by station. Basically, some of single model line balancing techniques are modified and incorporated to be fit into the MMAL. The proposed algorithm is based on N.T. Thomopoulos' [8] method and supplemented with several well proven single model line balancing techniques proposed in the literature until recently. Hoffman's precedence matrix [2] is used to indicate the ordering relations among tasks. Arcus' Rule IX [1] is applied to generate rapidly a fairly large number of feasible solutions. Consequently, this proposed algorithm reduces the fluctuations in operation times among the models as well as the stations and the balance delays. A numerical example shows that the proposed algorithm can provide a good feasible solution in a relatively short time and generate relatively better solutions comparing to other three existing methods.

Two variations of cross-distance selection algorithm in hybrid sufficient dimension reduction

  • Jae Keun Yoo
    • Communications for Statistical Applications and Methods
    • /
    • 제30권2호
    • /
    • pp.179-189
    • /
    • 2023
  • Hybrid sufficient dimension reduction (SDR) methods to a weighted mean of kernel matrices of two different SDR methods by Ye and Weiss (2003) require heavy computation and time consumption due to bootstrapping. To avoid this, Park et al. (2022) recently develop the so-called cross-distance selection (CDS) algorithm. In this paper, two variations of the original CDS algorithm are proposed depending on how well and equally the covk-SAVE is treated in the selection procedure. In one variation, which is called the larger CDS algorithm, the covk-SAVE is equally and fairly utilized with the other two candiates of SIR-SAVE and covk-DR. But, for the final selection, a random selection should be necessary. On the other hand, SIR-SAVE and covk-DR are utilized with completely ruling covk-SAVE out, which is called the smaller CDS algorithm. Numerical studies confirm that the original CDS algorithm is better than or compete quite well to the two proposed variations. A real data example is presented to compare and interpret the decisions by the three CDS algorithms in practice.

Aircraft delivery vehicle with fuzzy time window for improving search algorithm

  • C.C. Hung;T. Nguyen;C.Y. Hsieh
    • Advances in aircraft and spacecraft science
    • /
    • 제10권5호
    • /
    • pp.393-418
    • /
    • 2023
  • Drones are increasingly used in logistics delivery due to their low cost, high-speed and straight-line flight. Considering the small cargo capacity, limited endurance and other factors, this paper optimized the pickup and delivery vehicle routing problem with time windows in the mode of "truck+drone". A mixed integer programming model with the objective of minimizing transportation cost was proposed and an improved adaptive large neighborhood search algorithm is designed to solve the problem. In this algorithm, the performance of the algorithm is improved by designing various efficient destroy operators and repair operators based on the characteristics of the model and introducing a simulated annealing strategy to avoid falling into local optimum solutions. The effectiveness of the model and the algorithm is verified through the numerical experiments, and the impact of the "truck+drone" on the route cost is analyzed, the result of this study provides a decision basis for the route planning of "truck+drone" mode delivery.

A MODIFIED KRASNOSELSKII-TYPE SUBGRADIENT EXTRAGRADIENT ALGORITHM WITH INERTIAL EFFECTS FOR SOLVING VARIATIONAL INEQUALITY PROBLEMS AND FIXED POINT PROBLEM

  • Araya Kheawborisut;Wongvisarut Khuangsatung
    • Nonlinear Functional Analysis and Applications
    • /
    • 제29권2호
    • /
    • pp.393-418
    • /
    • 2024
  • In this paper, we propose a new inertial subgradient extragradient algorithm with a new linesearch technique that combines the inertial subgradient extragradient algorithm and the KrasnoselskiiMann algorithm. Under some suitable conditions, we prove a weak convergence theorem of the proposed algorithm for finding a common element of the common solution set of a finitely many variational inequality problem and the fixed point set of a nonexpansive mapping in real Hilbert spaces. Moreover, using our main result, we derive some others involving systems of variational inequalities. Finally, we give some numerical examples to support our main result.