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Prediction-based Interacting Multiple Model Estimation Algorithm
for Target Tracking with Large Sampling Periods

Jon Ha Ryu, Du Hee Han, Kyun Kyung Lee, and Taek Lyul Song*

Abstract: An interacting multiple model (IMM) estimation algorithm based on the mixing of the
predicted state estimates is proposed in this paper for a right continuous jump-linear system
model different from the left-continuous system model used to develop the existing IMM
algorithm. The difference lies in the modeling of the mode switching time. Performance of the
proposed algorithm is compared numerically with that of the existing IMM algorithm for noisy
system identification. Based on the numerical analysis, the proposed algorithm is applied to
target tracking with a large sampling period for performance comparison with the existing IMM.

Keywords: Noisy system identification, prediction-based IMM, target tracking.

1. INTRODUCTION

Identification of systems with abrupt changes or
unknown noise statistics plays a crucial role in
controller design, failure detection, and maneuvering
target tracking. When a single filter is used for system
identification, accurate modeling is an important issue
for reliable estimation performance. However,
obtaining accurate modeling may be difficult in
practice due to the lack of knowledge about the
system and the practical limitations imposed by
computational ~ complexities. = Multiple = model
estimation assuming that the system under
consideration obeys one of a finite number of models
is introduced in [2]. Dependence of identification
performance on modeling can be weakened in this
multiple model approach due to the probabilistic
combination of the estimates generated from multiple
filters. A bank of filters utilizing different models can
also be applied to systems with switching models
[3,4]. The multiple model estimation technique has
evolved into the IMM algorithm [1]. The essential
difference between the IMM algorithm and the
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previous multiple model estimation lies in the timing
of hypotheses mixing, and it is known for its cost-
effectiveness regarding computational complexity and
performance. The IMM algorithm has been applied to
a number of problems including air traffic control
[5,18], target glint filtering [6], maneuvering target
tracking [7], radar management [8], system noise
identification [9], tactical ballistic missile tracking
[12], and out-of-sequence measurements [19].
Recently, some modified versions of the IMM to
improve estimation performance have been developed,
such as the adaptive IMM algorithm [14], the
reweighted IMM algorithm [15], and IMM estimation
by smoothing [16,17].

The IMM algorithm was developed for a jump-
linear system called the left-continuous system [10],
in which the impact of the new mode starts right after
the measurement sampling time. In this paper, a
modified version of the IMM algorithm called the
Prediction-based IMM (PBIMM) is developed for a
jump-linear system in which the impact of the new
mode starts just before the measurement sampling
time such that the system becomes right-continuous. It
is thought that the mode in nature is a continuous
parameter that could be discretized and modeled in
different ways. Moreover, it is found in this paper that
the mode change time difference leads the PBIMM to
have a different algorithm from the IMM and to reveal
a different performance in noisy system identification
and target tracking in an active sonar application. The
PBIMM consists of 4 steps: prediction, interaction
after mode change, measurement update, and
combination. The order of the interaction and
prediction steps is changed from that of the IMM
algorithm. It is found that the PBIMM and the IMM
algorithms are identical if the Markovian parameters
defining the mode state are only related to the meas-
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urement equation. However, the algorithms are
different if the Markovian parameters are involved in
the system dynamic equation.

The PBIMM is applied to noisy system
identification problems, and the performance is
compared numerically with that of the IMM.
Motivated by the numerical analysis, the PBIMM is
further applied to target tracking by an active sonar
with a large sampling period. The results indicate that
the PBIMM outperforms the IMM and so could be
used in practice for active sonar systems that require
large sampling periods and yet need to produce
accurate enough target state estimates.

2. DEVELOPMENT OF THE PBIMM

The jump-linear system model for development of
the IMM algorithm [1,10] is described in (1) where
the mode at time &, M, is assumed to be a Markovian
parameter among the possible ¥ modes with known
mode transition probabilities.

Xp = QM) xp g +B(M ) w_ (M)
Wi (M) ~ N(6(My), O(My)),
Zy :H(Mk)xk "rvk (Mk)
Vi (My) ~ N(c(My), R(My)).

(D

It is also assumed that the mode M, is in effect for

i <t<tf such that the mode jump process is
assumed left-continuous (i.e., the impact of the new
mode starts at 7} ) [10]. The key feature of the IMM

algorithm is mixing multiple models using mode
probability in order to alleviate dependence of
accuracy of target dynamic models and filter
performance. As the sampling period becomes large,
filter performance is seriously influenced by model
accuracy. The alleviation of model dependence of the
IMM algorithm may have a negative effect on filter
performance when one of the models of the IMM
algorithm matches with real target motion for tracking
systems with large sampling periods. It is expected to
have better filter performance by reducing uncertainty
of prediction through performing the interacting step
after the prediction step rather than vice versa. In
order to implement the above assertion, the mode
jump process could be modeled in a different way.
The system model used in this paper is jump-linear,

and the mode M, is in effect for 7, <tr<t,,,. The
proposed system dynamic model is expressed as

Xp = DMy _)xpy +B(My_)we (M)
Wi (M) ~ N(b(M; ), O(My_1)),
zi = H(My ) xp +vi (M)
Vi (M) ~ N(e(My), R(My)),

2)

where ®,B,b,0,H,c and R are considered to vary
within a finite set. It is assumed that v, and w; are

mutually independent Gaussian noise sequences and
uncorrelated with xy. In (2), the state x;, is

considered as a propagated variable influenced by the
mode M;_; and the mode is allowed to change to

M, just before the measurement sampling time

t=1t;; however, M) doesnotinfluence x;.

The difference between models (1) and (2) lies in
model switch time. In the IMM algorithm which
utilizes (1), the mode is modeled to switch its value
right after the measurement sampling time while in
this paper, the mode is modeled to switch just before
the measurement sampling time.

The mode or hypothesis corresponding to the ith
Markovian parameter is denoted as the mode state

M. A cycle of recursions for the evolution of the
conditional probability density functions in the
development of the IMM algorithm [1] is summarized
as

j mode change, interacting
Py | My 1.2y ) > p(x;

prediction

| My, Zy ) 2o (o | MY, Z, ) e,
plxy | M}, Zy) 3)
where  Z; ={z),z5,:-,z;}. In the above, the

interacting step that is unique in the IMM algorithm
enables the mixing of the estimates in a cost-effective
way while enhancing the performance compared to
the other algorithms with similar computational
complexities [1]. Detailed derivation of the IMM
algorithm is referred to [1]. Now, the evolution of the
conditional density functions for the system model of
(2) should be modified to utilize the predicted
estimates rather than the measurement-updated
estimates in the interacting step such as

. dict .
PO [ My 1,2y ) —2250 p(xg | My, Z4y)

mode change, interacting i
> PO | My, Zy_y)

—EEEs p(xy | M}, Z). “)
Let fc};_l and f’,f,l represent the conditional

mean and covariance under the mode M;_; given

Z;_ suchas

POyt I My 1,24 ) ~ NGy, B, (5)

then the prediction step of (4) results in the predicted
state estimation algzorithm of a Kalman filter as one
can see from the dynamic equation of (2) and

p(x, | M} _4,Z,_)) satisfies
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PG | My, Z 1)~ NG, B, (6)

To derive a representation of the interacting step of
(4), the following equation is introduced from the
Bayes formula

PO, My 1 Z, )

- N
P{M} | Z, 1}

P | M}, Zy ) =

where the probability of M,’C for given Z;_4,

P{M, | Z;y} calculated by the Chapman-
Kolmogorov equation as
P{M} | Z, )= Z’T P{M{_ | Z4 1) (®)

where N is the total number of the modes under

consideration and where 7 =P{M, |M]€_1} is the

mode transition probability from M ,g_l to M ,’C

The numerator of (7) can be expressed from the
total probability theorem as

p(xk>MIic | Zg-1)
N
=Zp(xk:Mk| LW ZeDPIM 1 Z s 9)

MZ N

Dp(x; |Mk 27 P{le_l [ Ziass

~.
]
—

where the fact that for the system dynamic model of
(2), x;, is independent of M,i for the given M ,{_1
is used.

If we assume that p(x; | M ,i,Z 1) of (7) satisfies

p(x IML,Z, )~ NG, B, (10)

then i}c and 13k’ are obtained from (6), (8) and (9)
as :

Mz

X 7w PIMY_ 1 Z )

5 =L ‘ , (n
> 7 PMY 1 2 4}
j=1
N o i .
Z PJ +(f,{ —filc)(f;{ -X;) )”jiP{Mli—l | Zy_1}
~i j=1
B =

N .
D PAMY 1 Z, )
=

Each of N pairs %, and P is used as input to

a Kalman filter based on the mode M} to yield %,

}A’k" in the update process of (4) such that
(o | My Z) ~ NG B (12)

Similar to the IMM algorithm of [1], the states and
covariances are combined for output purpose only
from

N . .
R = D B P{M | Zy ),
N ' . . | (13)
B =Y (B + R = %)y — %) P{M 1 23,
i=1
where the mode probability P{M, ,’c |Z,_;} is updated
by
P{M} | Z;}

Pz | My, 2y 1)277 PiM] |12, ) (14)
j=1

N N
) )
> Pz IMP,Zy )Y 7 PAMI_ | 2y}
h=1 j=1

Note that p(z; |M,i,Z 1) in(14) satisfies
PG | My, Zy )
1 1 e y
Z——feXP[—E(zk o AU AN EA —ka)j»
‘2ﬂ§]i 2

(13)
where S} is defined as HP,;HT +R. If we denote

b as a parameter in the mode state M " to be
identified, then the estimate of b at f=¢, can also
be obtained from

N . .
by =D b P{M; | Z;}, (16)
i=1

where M, ,’c is the ith mode assuming the value of

b as b'. The resulting algorithm called the PBIMM
can be illustrated as Fig. 1.

The PBIMM is the same as the IMM if the
Markovian parameters are only involved in the
measurement equation so that H,c, and R are

designated to the mode state M J ,J=12,-- N.
However, it was found that the PBIMM and the IMM
are different if the mode set is defined in the system
dynamics so that ®,B,b and @ are designated to
the mode states. The latter case has many important
applications such as fault detection, maneuvering
target tracking, and process noise identification. As
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Fig. 1. Schematic diagram of the PBIMM.

shown in the above derivation, if the dimension of the
state vector and the number of modes are the same in
both algorithms, the PBIMM has identical
computational complexity to the existing IMM. This
is due to the fact that both algorithms consist of
identical interacting, prediction and update steps;
however, the order of steps and the inputs to each step
are merely changed. For example, the updated state

estimate fc,{;l of the IMM is replaced by the predicted

state estimate X; of the PBIMM as the input to the
interacting step.

3. SIMULATION RESULTS

In the first part of this section, performance of the
PBIMM is tested and compared with that of the IMM
when the process noise of a second-order linear
system is to be identified. The system is described by
[9]

T a7

The stationary process noise wj, is a Gaussian

noise sequence with unknown mean and variance
whereas the measurement noise v, is a zero-mean

Gaussian noise sequence with R=1. Firstly, the
unknown mean is identified by the PBIMM with the

M":w, ~N(,1), and
M?:w, ~N(10,1). The sampling period 7 =1 is

used as [9]. The transition probability matrix of the
two-mode system used is

{”.}_ 0.98 0.02 as)
! 0.02 098/

two  possible  modes

Table 1. Identification of process noise mean with
b'=1 and b*=10.

true mean 1 1.3 1.5 2
IMM 1.120 1.192 1.260 1.522
PBIMM 1.270 1.333 1.403 1.710
true mean 3 4 5 6
MM 2.534 3.794 4.956 6.052
PBIMM | 2.817 3.976 5.007 5.976
true mean 7 8 9 9.5
IMM 7.194 8.427 9.458 9.737
PBIMM | 7.023 8.164 9.264 9.581
true mean 9.7 10
IMM 9.808 9.882
PBIMM | 9.656 9.724

while the two initial mode probabilities were both set
to 0.5 since no prior information was available
concerning the modes. The process noise mean was
estimated according to the parameter identification
algorithm expressed in (16). Table 1 is a summary of
the results of a series of Monte Carlo simulation runs
as the true mean value is between 1 and 10. Each
result is the average quantity obtained from 100
simulation runs with 40 sampling periods per each run.

The results indicate that the PBIMM performs
better than the IMM except in the cases where the true
mean becomes very close to the lower and upper

bounds »' and b2

becomes close to the average value of p' and b

and where the true mean

When the true mean is close to the average of p' and

b?, the PBIMM and the IMM show almost identical
results.

Hence, it is noteworthy that the PBIMM generates
more accurate estimates than those of the IMM for the
wide range of & as illustrated in Table 1, and that the
PBIMM could be more usefully applied in practice
since the exact values of the upper and lower bounds
are not exactly known in general. .

Next, the process noise variance @ is to be

identified with the two possible modes M’ Wy ~

N(0,1), and M? :wy, ~ N(0,10). The other simula-
tion conditions are equivalent to the previous case.
The results are summarized in Table 2.

The results indicate that the PBIMM performs
better than the IMM except in the cases where the true
process noise variance approaches the lower and
upper bounds expressed as Q' and Q7 respectively.
The results also indicate that the PBIMM may
produce more accurate estimates of Q in practical
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Table 2. Identification of process noise variance with

Jon Ha Ryu, Du Hee Han, Kyun Kyung Lee, and Taek Lyul Song

0'=1 and 0*=10.

true
variance Q I 3 > 7 10
MM 2.213 | 5.292| 6.909 | 7.836 | 8.457
PBIMM [ 2.288 | 5.20 | 6.756 | 7.671 | 8.305

applications as the exact values of the upper and lower
bounds are not known, and the bounds are filter
design parameters.

The influence of the sampling period T on
estimating the process noise mean b is analyzed next.
The unknown mean is identified with the two possible

modes M':w, ~N(L,1), and M?:w, ~ N(10,1)
2}. Fig.
2. is a summary of time averages of the estimates of
b by the PBIMM and the IMM obtained from 100

runs of Monte Carlo simulation. The results for 7 =1
are referred to in Table 1.

for various values for T €{0.1, 0.5, 1, 1.5,

T=0.1 sec

Estimation Error

Estimation Error

B e ‘ T T T T T ‘ ; ]
1 3
‘ 5 6 7 9

True mean

Estimation Error

Estimation Error

Table 1 and Fig. 2 indicate that the performance of
the IMM is similar to the performance of the PBIMM
for identifying most of the true mean values when T
is small. However, the PBIMM performs better than
the IMM when T becomes large except in the cases
where the true mean becomes model values for the
filters. As the process noise mean b can be
considered as the target acceleration, the above results
motivate applications of the PBIMM to target tracking
with a large sampling period as is seen in active sonar
practices.

The first example in this section is extended to 2-
dimensional underwater target tracking by an active
sonar system which has a relatively large sampling

period. The discretized system equations for
maneuvering target tracking are described by
X1 =Dx, +I'(a, +wy),
K+l i+ (a +wy) (19)

Zy :ka +GVk,

where the state x, consists of target position and

True mean

T=2.0 sec
IMM
PBIMM

1.5 : ‘ ; ‘ ; : )

True mean

Estimation error of process noise mean for various sampling periods.
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velocity components in X and Y axes such that 5000 | | 7 | ‘ T
. . | | | | i |
xkz(X,Y,X,Y)g,wk is a zero-mean white Gaussian S S S S S S S
| | | |
process noise vector with covariance O, and v, isa ! ! ! ! |
. . . 6000 —f— — - R S el T -
Zero-mean measurement noise vector with covariance 1 | ! ] : {T )
. ! L i
R. System matrices for (19) are defined as 5000,,,,,,,,,J,,,l,,,lﬁ,g,,,; I
! | | |
. o o
]2 T]2 £4000 4 — — -~ —d— oo = [P L
@ = 2 i 1 1 1
O I B | | :
| |
2 W0 - — - — - — = —— - —— ===~ — - === === + |
2 | | |
T/] | | |
I'= 2°2 R 2000 —— - - - - - - - - -----c---- - : -
I, (20) | o
1 000 ; | | | ‘ |
H = ) , . | i | ‘ | i
0100 o
G 0 00 000 P a00 P ec0 P 000
— 12 , Easfim]

and a;, =(X,Y ){ is the target acceleration vector.

The PBIMM algorithm approximates the evolution of
the target true acceleration within a finite set of

acceleration values. The 4 modes describing 2- e
dimensional target acceleration vectors are selected as e
M, =(0.05,0.05)" (m/sec?), M, =(~0.05,0.05)" (m/

sec’), M = (=0.05,-0.05)" (m/sec’) and M, = (0.05, .

108 —1

—O.OS)T (m/ secz). For the target tracking problem,

Q= 0.05212 (m/secz)z, R=10? 1 (m)? are used, the

sampling period is chosen to be 13sec, and the mode
transition probability matrix is selected to be ]

106

Position RMSE . m

104 —

0.85 0.05 0.05 0.05

0.05 0.85 0.05 0.05 06 b oo o
()= e

0.05 0.05 0.85 0.05

0.05 0.05 0.05 0.85

Time(sec)

Fig. 4. RMSE of target position estimates.

Note that the measurement noise covariance results
in a standard deviation of 14.14m in the range
direction error. The initial position of the target is

(6km, 6km)T and the initial velocity of the target is

(0, —3m/sec)T . For the time interval Osec <¢ <720
sec, the target moves in a circular path of radius

344m with a constant velocity and acceleration of
0.026 m/sec’. The target trajectory is shown in Fig. 3.

Figs. 4-6 show the RMSE values of 1,000 runs of
Monte Carlo simulation resulting from employing the
IMM and the proposed PBIMM. The results indicate
that the PBIMM outperforms the IMM for target
position, velocity, and acceleration estimation. The
results indicate that the PBIMM can be used for
practical target tracking with large sampling periods ‘ i
as required in active sonar systems and sonar resource 0 200 Timelsec] 800 soe
management practices [11].

Finally, the PBIMM and the IMM algorithms with Fig. 5. RMSE of target velocity estimates.

Velocity RMSE , misec
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Acceleration RMSE , m/sec?

0.016 — — — —

0.012
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Fig. 6. RMSE of target acceleration estimates.

two different dynamic models are applied to
underwater active sonar target tracking. The dynamic
models used in the simulation study are the constant
velocity (CV) model and the constant turn rate (CTR)
model. The CV model employs the discretized system
equation of (19) with a; = 0, and the system matrices
are the same as described in (20). The state of the
CTR model consists of target position, velocity, and
acceleration components, and the system equations
are expressed in the same form as the CV model, but
with different dimensions. The system matrices are
expressed as follows [20,21].

[ sin@T l-coswT . |
1, 1, 3 1,
w @
©=|0, coswll, sin oF 5 s
w
0, -osinwll, cosaTl,
B 1 000 00 Gl ”
o100 0 0 % (22)
[@T —sinwT | ]|
—.]2
3
W
= l—cosa)TI2 ’
2
W
sinwT
2
a) -

where @ is the turn rate. For this target tracking
problem, R = 10°I(m)>, Qcy= 0.01°L(m/sec?), Ocrr
= 0.005°I(m/sec’)’ are used and the mode transition
probability matrix is selected to be

[08 02 ,
{”f"}_[o.z 0.8}' @)

The target is assumed as a submarine, which
executes an evasive maneuver to avoid a situation of
being tracked by a target motion analysis scheme. The

initial position of the target is (6km, 6km)T, and the
target is initially moving in a straight line with a
-67.5° of
heading angle from the Y-axis. The target moves with

constant speed of 3(m/sec) with

an initial course of —67.5° for Osec <t < 50sec,
and then the target executes a periodic motion with
w=11 (deg/sec) with a switching period of
135 seconds. Note that if an active sonar system is
used to detect a target located near 10km from the
system, a sampling period of 13sec is required. The
target trajectory is depicted in Fig. 7.

Figs. 8-10 show the results extracted from 1,000
Monte Carlo simulation runs to demonstrate the
superior performance of the proposed PBIMM by
comparison with the IMM. Listed in these figures are

h
5

6000 ——

5000 ——

2000 ——

1000 ——

0 : | 1 : ‘ |

0 toe 2000 3000 4000 6000

Easfim]

Fig. 7. Target trajectory.

Position RMSE , m

Timefsec]

Fig. 8. RMSE of target position estimates.
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Velocity RMSE , mésec

Timel[sec]

Fig. 9. RMSE of target velocity estimates.

012 —

011 —

0.08 - :-

Acceteration RMSE, mvsec?
o
o
g
|

Time[sec]

Fig. 10. RMSE of target acceleration estimates.

the RMSE values of the estimates of the target
position, velocity, and acceleration. The results
indicate that the proposed PBIMM has a superior
performance to the IMM, and that it has advantages in
calculating future target positions such as are required
in combat management systems.

In addition to these results, Figs. 11 and 12 show
the sensitivities of the IMM and the PBIMM to the
same variations of R. The scalar k£ is a filter
parameter used in filter algorithms such that the filters
assume that the measurement noise covariance is
k*R instead of the true value of R.

The simulation results show that the PBIMM is less
sensitive to the filter parameter since the RMSE
values of the IMM are much more widely dispersed
than those of the PBIMM as k varies, which
indicates that the PBIMM has some practical
advantages since the true measurement noise

IMM
K=05
e e e K210

\
Bl S |

Position RMSE, m

o] 200 400 600 800
Time[sec]

Fig. 11. RMSE of target position estimates of the
IMM algorithm.

Fig. 12. RMSE of target position estimates of the
PBIMM algorithm.

covariance may not be available in diverse underwater
tracking environments.

4. CONCLUSION

The PBIMM algorithm based on the mixing of the
predicted state estimates is developed and applied to
process noise identification of a linear system and a 2-
dimensional target tracking with a large sampling
period. Similar to the existing IMM algorithm, the
PBIMM algorithm is cost effective regarding
computational complexity and performance compared
to the other multiple model approaches.

The PBIMM produces the same results as the IMM
if the Markovian parameters are only involved in the
system measurement while producing different results
if the Markovian parameters are involved in the
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system dynamics. A study of Monte Carlo simulation
runs indicates that the PBIMM produces more
accurate estimates of mean and covariance of process
noise than the IMM if the sampling period becomes
larger while producing a similar performance for
small sampling periods. Based on the numerical
analysis, the PBIMM is applied to underwater target
tracking with an active sonar system of which the
sampling period is 13sec. The results of the Monte
Carlo simulation runs indicate that the PBIMM
outperforms the IMM in this application. It is also
shown that the PBIMM has more freedom than the
IMM to select filter parameter values for maneuvering
target tracking such that this burden can be alleviated
for filter parameter tuning. A series of simulation
studies shows that the PBIMM is a viable solution to
target tracking systems operated with large sampling
periods.
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