• Title/Summary/Keyword: Numerical algorithm

Search Result 4,121, Processing Time 0.028 seconds

A Study on Linear Matrix Inequalities Robust Active Suspension Control System Design Algorithm

  • Park, Jung-Hyen
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.1
    • /
    • pp.105-109
    • /
    • 2008
  • A robust optimal control system design algorithm in active suspension equipment adopting linear matrix inequalities control system design theory is presented. The validity of the linear matrix inequalities robust control system design in active suspension system through the numerical examples is also investigated.

The Ellipsoid Method for ILP Problem and its Application (ILP를 위한 타원법과 그 응용)

  • 김준홍
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.11 no.17
    • /
    • pp.15-23
    • /
    • 1988
  • The subject in this paper is to apply the ellipsoid method proposed by khachiyan〔1〕 to ILP systems. For solving ILP problems we will present a algorithm using the modified formular of Pallaschke〔2〕. Additionally, computational results indicate that out algorithm is subject to the numerical stability.

  • PDF

Differential Evolution Algorithm for Job Shop Scheduling Problem

  • Wisittipanich, Warisa;Kachitvichyanukul, Voratas
    • Industrial Engineering and Management Systems
    • /
    • v.10 no.3
    • /
    • pp.203-208
    • /
    • 2011
  • Job shop scheduling is well-known as one of the hardest combinatorial optimization problems and has been demonstrated to be NP-hard problem. In the past decades, several researchers have devoted their effort to develop evolutionary algorithms such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) for job shop scheduling problem. Differential Evolution (DE) algorithm is a more recent evolutionary algorithm which has been widely applied and shown its strength in many application areas. However, the applications of DE on scheduling problems are still limited. This paper proposes a one-stage differential evolution algorithm (1ST-DE) for job shop scheduling problem. The proposed algorithm employs random key representation and permutation of m-job repetition to generate active schedules. The performance of proposed method is evaluated on a set of benchmark problems and compared with results from an existing PSO algorithm. The numerical results demonstrated that the proposed algorithm is able to provide good solutions especially for the large size problems with relatively fast computing time.

Numerical investigation of the gravity effect on the shape of natural supercavity

  • Pouraria, Hassan;Park, Warn-Gyu
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.58-64
    • /
    • 2011
  • The objective of this paper is to investigate the gravity effect on the shape characters of natural supercavity. A finite difference solver along with an implicit, dual time, preconditioned, three-dimensional algorithm has been used to solve the two-phase Navier Stokes equations. Numerical solutions were performed for natural supercavitating flow past a disk for different cavitation and Froud numbers. The numerical results were compared with corresponding analytical results in quantitative manner and it was found that the shape of supercavity was reasonably predicted Numerical results indicated that the gravity effect can induce the asymmetry of supercavity. The asymmetry was apparent when the froud number was smaller so that for constant cavitation number when we reduced the froud number the opt of the axis of supercavity increased. Moreover, for specific froud number a decrease in cavitation number resulted in an increase in the offset of the supercavity Numerical results revealed that for froud number greater than 25 the gravity effect is negligible.

  • PDF

L1 norm-recursive least squares algorithm for the robust sparse acoustic communication channel estimation (희소성 음향 통신 채널 추정 견실화를 위한 백색화를 적용한 l1놈-RLS 알고리즘)

  • Lim, Jun-Seok;Pyeon, Yong-Gook;Kim, Sungil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.1
    • /
    • pp.32-37
    • /
    • 2020
  • This paper proposes a new l1-norm-Recursive Least Squares (RLS) algorithm which is numerically more robust than the conventional l1-norm-RLS. The l1-norm-RLS was proposed by Eksioglu and Tanc in order to estimate the sparse acoustic channel. However the algorithm has numerical instability in the inverse matrix calculation. In this paper, we propose a new algorithm which is robust against the numerical instability. We show that the proposed method improves stability under several numerically erroneous situations.

An unified rough and finish cut algorithm for NC machining of free form pockets with general polygon - Part 2. Experiment (일반적인 내벽을 가진 자유바닥 곡면 파켓의 NC 가공을 위한 단일화된 황삭과 정삭 알고리즘 - Part 2. Experiment)

  • Choi, Yong-Hoon;Kim, Sang-Jin
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.12 no.1
    • /
    • pp.46-53
    • /
    • 2007
  • NC (Numerical Control) code for the tool path needs to be generated efficiently for machining of free form pockets with arbitrary wall geometry on a three axis CNC machine. The unified rough and finish cut algorithm and the tool motion is graphically simulated in Part 1. In this paper, a grid based 3D navigation algorithm simulated in Part 1 for generating NC tool path data for both linear interpolation and a combination of linear and circular interpolation for three-axis CNC milling of general pockets with sculptured bottom surfaces is experimentally performed and verified.

  • PDF

Semi-active friction dampers for seismic control of structures

  • Kori, Jagadish G.;Jangid, R.S.
    • Smart Structures and Systems
    • /
    • v.4 no.4
    • /
    • pp.493-515
    • /
    • 2008
  • Semi-active control systems have attracted a great deal of attention in recent years because these systems can operate on battery power alone, proving advantageous during seismic events when the main power source of the structure may likely fail. The behavior of semi-active devices is often highly non-linear and requires suitable and efficient control algorithm. This paper presents the comparative study and performance of variable semi-active friction dampers by using recently proposed predictive control law with direct output feedback. In this control law, the variable slip force of semi-active variable friction damper is kept slightly lower than the critical friction force, which allows the damper to remain in the slip state during an earthquake, resulting in improved energy dissipation capability. This control algorithm is able to produce a continuous and smooth slip forces for a variable friction damper. The numerical examples include a structure controlled with multiple variable semi-active friction dampers and with multiple passive friction dampers. A parameter, gain multiplier defined as the ratio of damper force to critical damper control force, is investigated under four different real earthquake ground motions, which plays an important role in the present control algorithm of the damper. The numerically evaluated optimum parametric value is considered for the analysis of the structure with dampers. The numerical results of the variable friction dampers show better performance over the passive dampers in reducing the seismic response of structures.

Analysis of Error Tolerance in Sonar Array by the Genetic Algorithm (유전자 알고리즘에 의한 소나 배열 소자의 허용오차 분석)

  • 양수화;김형동
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.6
    • /
    • pp.496-504
    • /
    • 2003
  • In this paper, the error tolerance of each array element to ensure a given specified error level for the array pattern is analyzed using the Genetic Algorithm. In the conventional deterministic method for synthesis of sonar way problems the computational resource required in the simulation grows rapidly as the number of way elements increases. To alleviate this numerical inefficiency, the Monte-Carlo method may be considered as an alternative technique for array syntheses. However, it is difficult to apply the method to the synthesis of array patterns because of its relatively lower accuracy in spite of moderate computational complexity. A new analysis method for estimating error tolerances in sonar arrays is Proposed since the Genetic Algorithm has significant promise to efficiently solve way synthesis problems. Through several numerical tests in linear and planar arrays, it is demonstrated that the proposed method can provide accurate results for error tolerances of sonar arrays.

Performance Enhancement Directional CSMA/CA Algorithm in mmWave Bands (밀리미터파 대역에서 지향성 CSMA/CA의 성능 향상을 위한 알고리즘)

  • Kim, Mee-Joung;Lee, Woo-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.1B
    • /
    • pp.15-20
    • /
    • 2012
  • In this paper, an algorithm that enhances the conventional directional CSMA/CA protocol in IEEE 802.15.3c is proposed under saturation environments. For the algorithm, a Markov chain model is presented and analyzed in no-ACK mode. The effects of directional antennas and the features of IEEE 802.15.3c MAC are considered in the model. The optimal sizes of contention window are derived from the numerical results. The numerical results show that the proposed directional CSMA/CA algorithm outperforms conventional one. The overall analysis is verified by simulation. The obtained results provide the criterion for selecting the optimal parameters and developing a MAC protocol that enhances the performance of mmWave WPANs.

Free Vibration of Radially Multi-Delaminated Beams (방사형 다층간분리된 보의 자유진동)

  • 이성희;마석오;한병기;박대효
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.25-32
    • /
    • 2002
  • Free vibration analysis of radialiy multi-delaminated beams with through-the-width multi-delamination is performed in the present study. The multiple delaminations are considered to be in a radial manner through the thickness from the top surface of the beam. The natural frequencies of the radially multi-delaminated beams are calculated from a new algorithm that is based on the single compound delaminated beam model. That is, beams with radial multi-delaminations are regarded as the sum of a single compound delamlnated beam that is the single sub-delaminated beam from the top surface of global beam. Each result of frequency equation for the single delaminated beam with unknown boundary conditions obtained through continuity conditions Is updated to the next one, With these sequential operations, the final frequency equation of radially multi-delaminated beams is obtained for both ends boundary conditions of global beam. The numerical results carried out for the beams are compared with those of some references to give the reliance on the proposed algorithm and to investigate the effects of the shape, number, size of multi-delaminations on the natural frequency. Compared with the other previously presented model, the proposed algorithm is more flexible in modeling and formulating as the total array size of frequency equation is always four by four. Therefore, the proposed algorithm will reduce the effort of user in formulating the physical model to the numerical model.

  • PDF