• Title/Summary/Keyword: Numerical Reconstruction

Search Result 254, Processing Time 0.024 seconds

Electrical Resistance Tomography: Mesh Grouping and Boundary Estimation Algorithms

  • Kim Sin;Cho Hyo-Sung;Lee Bong-Soo
    • International Journal of Contents
    • /
    • v.1 no.1
    • /
    • pp.1-5
    • /
    • 2005
  • This paper presents the development and application of electrical resistance imaging techniques for the visualization of two-phase flow fields. Two algorithms, the so-called the mesh grouping and the boundary estimation, are described for potential applications of electrical resistance tomography (ERT) and results from extensive numerical simulations are also presented. In the electrical resistance imaging for two-phase flows, numerical meshes fairly belonging to each phase can be grouped to improve the reconstruction performance. In many cases, the detection of phase boundary is a key subject and a mathematical model to estimate phase boundary can be formulated in a different manner. Our results indicated that the mesh grouping algorithm is effective to enhance computational performance and image quality, and boundary estimation algorithm to determine the phase boundary directly.

  • PDF

Management of Discon tinuous Reconstruction In the Evolution Stage of Kinetic Scheme

  • Ohwada Taku;Kobayashi Seijiro
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.189-190
    • /
    • 2003
  • A New kinetic scheme for the compressible Navier-Stokes equations is developed. While the conventional approach, such as KFVS scheme, employs the splitting algorithm and computes the numerical flux on the basis of the collisionless equation, the present approach employs the splitting algorithm in the evaluation of the numerical flux, where the collision effect is explicitly taken into account. However, the initial condition employed in the computation is slightly different from the conventional Chapman-Enskog NS distribution function. The present study also reveals the background of the existing kinetic schemes. such as the KFVS scheme and Gas-Kinetic BGK scheme.

  • PDF

EXTENSION OF MULTI-DIMENSIONAL LIMITING PROCESS ONTO THREE-DIMENSIONAL UNSTRUCTURED GRIDS (다차원 공간 제한 기법의 3차원 비정렬 격자계로 확장)

  • Park, J.S.;Kim, C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.404-411
    • /
    • 2010
  • The present paper deals with the continuous work of extending multi-dimensional limiting process (MLP), which has been quite successfully proposed on two- and three-dimensional structured grids, onto the unstructured grids. The basic idea of the present limiting strategy is to control the distribution of both cell-centered and cell-vertex physical properties to mimic a multi-dimensional nature of flow physics, which can be formulated as so called the MLP condition. The MLP condition can guarantee a high-order spatial accuracy without yielding spurious oscillations. Recently, MLP slope limiter was proposed based on the MUSCL-type reconstruction in two-dimensional case and it can be readily extended to three-dimensional case. Through various numerical analyses and extensive computations, it is observed that the proposed limiters are quite effective in controlling numerical oscillations and very accurate in capturing both discontinuous and continuous multi-dimensional flow features on 3-D tetrahedral grids.

  • PDF

MULTIDIMENSIONAL INTERPOLATIONS FOR THE HIGH ORDER SCHEMES IN ADAPTIVE GRIDS (적응 격자 고차 해상도 해법을 위한 다차원 내삽법)

  • Chang, S.M.;Morris, P.J.
    • Journal of computational fluids engineering
    • /
    • v.11 no.4 s.35
    • /
    • pp.39-47
    • /
    • 2006
  • In this paper, the authors developed a multidimensional interpolation method inside a finite volume cell in the computation of high-order accurate numerical flux such as the fifth order WEND (weighted essentially non-oscillatory) scheme. This numerical method starts from a simple Taylor series expansion in a proper spatial order of accuracy, and the WEND filter is used for the reconstruction of sharp nonlinear waves like shocks in the compressible flow. Two kinds of interpolations are developed: one is for the cell-averaged values of conservative variables divided in one mother cell (Type 1), and the other is for the vertex values in the individual cells (Type 2). The result of the present study can be directly used to the cell refinement as well as the convective flux between finer and coarser cells in the Cartesian adaptive grid system (Type 1) and to the post-processing as well as the viscous flux in the Navier-Stokes equations on any types of structured and unstructured grids (Type 2).

FRACTIONAL STEP METHOD COMBINED WITH VOLUME-OF-FLUID METHOD FOR EFFICIENT SIMULATION OF UNSTEADY MULTIPHASE FLOW (비정상 다상유동의 효율적 수치모사를 위한 VOF가 적용된 Fractional Step 기법)

  • Lee, Kyong-Jun;Yang, Kyung-Soo;Kang, Chang-Woo
    • Journal of computational fluids engineering
    • /
    • v.15 no.4
    • /
    • pp.99-108
    • /
    • 2010
  • Fractional Step Methods(FSM) are popular in simulation of unsteady incompressible flow. In this study, we demonstrate that FSM, combined with a Volume-Of-Fluid method, can be further applied to simulation of multiphase flow. The interface between the fluids is constructed by the effective least squares volume-of-fluid interface reconstruction algorithm and advected by the velocity using the operator split advection algorithm. To verify our numerical methodology, our results are compared with other authors' numerical and experimental results for the benchmark problems, revealing excellent agreement. The present FSM sheds light on accurate simulation of turbulent multiphase flow which is found in many engineering applications.

A New Inverse Scattering Technique Using the Moment Method in the Spectral Domain , II : Numerical Simulation (파수영역에서 모멘트 방법을 이용한 새로운 역산란 방법 , II : 수치계산)

  • Lee, Jae-Min;Kim, Se-Yun;Ra, Jung-Woong
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.10
    • /
    • pp.1150-1157
    • /
    • 1988
  • In this paper, the reconstruction of complex permittivity distribution on a rectangular cross section of inhomogeneous dielectric cylinders is performed by employing the spectral inverse scattering scheme presented in the part I of these companion papers. Numerical simulations provide the superresolution to the permitivity profiles nearly regardless of the measurement locations of the scattered field and the permittivity distributions on the cross section.

  • PDF

Finite volume method for incompressible flows with unstructured triangular grids (비정렬 삼각격자 유한체적법에 의한 비압축성유동 해석)

  • ;;Kim, Jong-Tae;Maeng, Joo-Sung
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.11
    • /
    • pp.3031-3040
    • /
    • 1995
  • Two-dimensional incompressible Navier-Stokes equations have been solved by the node-centered finite volume method with the unstructured triangular meshes. The pressure-velocity coupling is handled by the artificial compressibility algorithm due to its computational efficiency associated with the hyperbolic nature of the resulting equations. The convective fluxes are obtained by the Roe's flux difference splitting scheme using edge-based connectivities and higher-order differences are achieved by a reconstruction procedure. The time integration is based on an explicit four-stage Runge-Kutta scheme. Numerical procedures with local time stepping and implicit residual smoothing have been implemented to accelerate the convergence for the steady-state solutions. Comparisons with experimental data and other numerical results have proven accuracy and efficiency of the present unstructured approach.

Numerical simulation of gas-liquid two phase flow in micro tubes

  • Sunakawa, Hideo;Teramoto, Susumu;Nagashima, Toshio
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.341-346
    • /
    • 2004
  • Motion of a bubble inside narrow tube is numerically studied. The numerical code assumes axi-symmetric incompressible flow field. The surface of the bubble is captured by VOF (Volume Of Fluid) method, and it is advected by MARS (Multiphase Advection and Reconstruction Scheme). Air bubble inside water is first studied, and it was found that a strong vortex, which is induced by the pressure difference caused by the surface tension, is formed at the rear part of the bubble. Then flow parameters are parametrically varied to understand the correlation between the bubble shape, the bubble velocity, and the flow parameters. The parametric study revealed that the aspect ratio of the bubble mainly depends on We number, and the oscillation of the bubble speeds is dependent on Re number.

  • PDF

SCALE MODEL EXPERIMENTS FOR ECHO PHENOMENA OF YINGYING PAGODA

  • Chen, Hsiao;Chen, Tong
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06a
    • /
    • pp.791-795
    • /
    • 1994
  • In this paper, the echo phenomena of Yingying Pagoda(ancient Chinese architecture), which may be resulted from interferences of reflection and diffraction by the pagoda eaves when pulse sound source is at some suitable positions, are investigated by an 1:2 scale model. There are valleys in frequency spectrum due to the interferences. On the other hand, taking eaves as wedges approximately, numerical spectral estimates are obtained from the closed-form impulse solution for diffraction of pulse point-source radiation by an infinite rigid wedge. The results of the numerical computations are similar to those of the model experiments. The study is a helpful guide to reconstruction or maintenance of this kind of ancient buildings.

  • PDF

Modification of MUSCL Scheme for Application of Non-uniform Grid (비정형격자의 적용을 위한 MUSCL 기법의 수정)

  • Kim, Byung-Hyun;Han, Kun-Yeon
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.1
    • /
    • pp.105-117
    • /
    • 2010
  • This paper presents a new and simple technique to perform MUSCL reconstruction for solving 2D shallow water equations. The modified MUSCL scheme uses weighted area ratio to apply non-uniform grid in stead of the previous method that equally distributed the difference of conservation variables to each interface. The suggested method can physically reconstruct conservation variables in case of uniform grid as well as non-uniform grid. In this study, Unsplit scheme applicable to unstructured grid is used and efficient slope limiter of TVD scheme is used to control numerical oscillation which can be occurred in modified MUSCL scheme. For accurate and efficient treatment of bed slope term, the modified MUSCL scheme is coupled with the surface gradient method. The finite volume model applied to suggested scheme is verified through a comparison between numerical solution and laboratory measurements data such as the simulations of isolated building test case and Bellos's dam break test case.