• Title/Summary/Keyword: Numerical Experiments

Search Result 3,259, Processing Time 0.03 seconds

A Study on Optimization of Diesel Combustion in condition of Premixed Natural gas (천연가스 예혼합 분위기 내 디젤 연소의 최적화에 관한 연구)

  • Suh, Hyunuk;Jeon, Chunghwan
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.141-142
    • /
    • 2014
  • This numerical study was carried out to optimize dual fuel combustion on natural gas-diesel in static chamber. Spray experiments conducted under conditions of premixed methan 0%, 5% and 10%. In the results, penetration decreases when premixed methane is increasing. Constants of numerical models were acquired from results of spray experiments to enhance accuracy of numerical study. And dual fuel engine simulation was implemented by using AVL-FIRE with acquired constants.

  • PDF

Experiments and Numerical Studies on Coil Shaped Elastoplastic Dampers (코일형 탄소성 감쇠기에 대한 실험 및 수치해석적 연구)

  • ;;Kurabayashi, Hiroshi;Ishimaru, Shinji
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.381-388
    • /
    • 2001
  • Behavior characteristics of coil shaped elastoplastic dampers, a sort of hysteretic damper, are studied on through experiments and numerical analyses. The coil shaped elastoplastic damper shows bilinear force-deformation relationship, and no stress concentration is occurred in the device. Numerical model, which is constructed through calibration with experimental results, shows good agreement with experiment, The coil shaped elastoplastic damper has lower yielding strength and stiffness under transversal loading compared to axial leading. Additional studies are required on behavior characteristics according to configuration variation of coil shaped elastoplastic dampers.

  • PDF

High-velocity impact of large caliber tungsten projectiles on ordinary Portland and calcium aluminate cement based HPSFRC and SIFCON slabs -Part II: numerical simulation and validation

  • Gulkan, P.;Korucu, H.
    • Structural Engineering and Mechanics
    • /
    • v.40 no.5
    • /
    • pp.617-636
    • /
    • 2011
  • We present the numerical implementation, simulation, and validation of the high-velocity impact experiments that have been described in the companion article. In this part, numerical investigations and simulations performed to mimic the tests are presented. The experiments were analyzed by the explicit integration-based software ABAQUS for improved simulations. Targets were modeled with a damaged plasticity model for concrete. Computational results of residual velocity and crater dimensions yielded acceptable results.

Numerical Experiments for the Stress-Reducing Preventive Maintenance Model (수치실험을 통한 스트레스 감소 예방보수모형의 고찰)

  • Park, Jong Hun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.3
    • /
    • pp.41-52
    • /
    • 2020
  • This paper investigates the stress-reducing preventive maintenance model through numerical experiments. The preventive maintenance model is used to analyze the relationship between related conditions and variables to gain insight into the efficient operation of the system when performing preventive maintenance in real-world situations. Various preventive maintenance models have been developed over the past decades and their complexity has increased in recent years. Increasing complexity is essential to reflect reality, but recent models can only be interpreted through numerical experiments. The stress-reducing preventive maintenance is a newly introduced preventive maintenance concept and can only be interpreted numerically due to its complexity, and has received little attention because the concept is unfamiliar. Therefore, for information purposes, this paper investigates the characteristics of the stress-reducing preventive maintenance and the relationship between parameters and variables through numerical experiments. In particular, this paper is focusing on the economic feasibility of stress-reducing preventive maintenance by observing changes in the optimal preventive maintenance period in response to changes in environmental stress and the improvement factor. As a result, when either the environmental stress or the improve effect of stress-reducing preventive maintenance is low, it is not necessary to carry out the stress-reducing preventive maintenance at excessive cost. In addition, it was found that the age reduction model is more economical than the failure rate reduction model.

Numerical Simulation of Breaking Waves around a Two-Dimensional Rectangular Cylinder Piercing Free Surface

  • Kim, Seung-Nam;Lee, Young-Gill
    • Journal of Ship and Ocean Technology
    • /
    • v.5 no.4
    • /
    • pp.29-43
    • /
    • 2001
  • In this paper, free surface flows around an advancing two-dimensional rectangular cylinder piercing the free surface are studied using numerical and experimental methods. Especially, wave breaking phenomenon around the cylinder is treated in detail. A series of numerical simulations and experiments were performed for the purpose of comparison. For the numerical simulations, a finite difference method was adopted with a rectangular grid system, and the variation of the free surface was computed by the marker density method. The computational results are compared with the experiments. It is confirmed that the present numerical method is useful for the numerical simulation of nonlinear free surface waves around a piercing body.

  • PDF

Experimental study on single- and two-phase flow behaviors within porous particle beds

  • Jong Seok Oh;Sang Mo An;Hwan Yeol Kim;Dong Eok Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.1105-1117
    • /
    • 2023
  • In this study, the pressure drop behavior of single- and two-phase flows of air and water through the porous beds filled with uniform and non-uniform sized spherical particles was examined. The pressure drop data in the single-phase flow experiments for the uniform particle beds agreed well with the original Ergun correlation. The results from the two-phase flow experiments were analyzed using numerical results based on three types of previous models. In the experiments for the uniform particle beds, the data on the two-phase pressure drop clearly showed the effect of the flow regime transition with a variation in the gas flow rate under stagnant liquid condition. The numerical analyses indicated that the predictability of the previous models for the experimental data relied mainly on the sub-models of the flow regime transitions and interfacial drag. In the experiments for the non-uniform particle beds, the two-phase pressure loss could be predicted well with numerical calculations based on the effective particle diameter. However, the previous models failed to accurately predict the counter-current flooding limit observed in the experiments. Finally, we propose a relation of falling liquid velocity into the particle bed by gravity to appropriately simulate the CCFL phenomenon.

Centrifuge Model Experiments and Numerical Analyses of the Behavior of Excavated Marine Clay Slope (해성점토 굴착사면의 거동에 관한 원심모형실험 및 수치해석)

  • Park, Byung-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.5 s.72
    • /
    • pp.49-56
    • /
    • 2006
  • In this thesis, centrifuge model experiments and numerical analyses were carried out to investigate the behavior of an excavated slope in soft clay ground. Centrifuge model tests were performed with various slopes for the excavated ground, such as 1:1.5 and 1:2. Pore pressuresthe model ground were measured to find their effects on the stability of the excavated slope. These experiments showed that the model with 1:2.5 maintained its stability within a short period of time and failed gradually. Therefore, anexcavated slope of soft soil with this slope might maintain stable conditions within a certain time. The mode1 with a 1:3 slope was observed to maintain a very stable condition, showing insignificant deformation in the ground after being excavated. Numerical analyses with PLAXIS, a commerciallyavailable software implemented with the finite element numerical technique, were performed to find the pore pressure distribution within the ground mass and the deformation of the soil. From the results of numerical analysis, a negative pore pressure was developed after the excavation and thus the stability of the slope was maintained. The safety factor for slope failure was found to decrease with time because of the dissipation of negative pore pressure with time.

The numerical model for predicting frost layer growth (서리층 성장 예측을 위한 수치적 모델)

  • Lee, K.S.;Jhee, S.;Lee, T.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.2
    • /
    • pp.249-258
    • /
    • 1997
  • In this study, a numerical model for analyzing frost formation phenomena on a cold flat plate has been developed. Both regions of air flow and frost layer have been coupled to calculate the amount of the heat and mass transfer between air flow and frost layer. Experiments have been also conducted to validate the numerical model. The present numerical results show a good agreement with the experimental data. The present numerical model also provides some useful data such as the temperature distribution inside the frost layer which could not be obtained through the experiments.

  • PDF

Study on the Vortex Shedding Phenomena Near Free Surface (자유수면 근처에서의 보오텍스 방출 현상에 관한 고찰)

  • Seok-Won Hong;Pan-Mook Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.2
    • /
    • pp.118-131
    • /
    • 1991
  • The effects of free surface on vortex shedding phenomena around a bluff body were studied by both numerical simulation and flow visualization experiments. A vortex method, which approximates the vorticity field as the sum of discrete vortices; was used for the numerical simulation. Flow visualization experiments were performed in the KRISO cavitation tunnel. Hydrogen bubble was used as illumination material. Free surface elevation was also measured during experiments. The hydrodynamic drag and lift were predicted by numerical simulation. The predicted period of vortex shedding was compared with the results of experiments.

  • PDF

Determination of Nesting Algorithm Fitness Function through Various Numerical Experiments (수치 실험을 통한 조선 강판 전용 Nesting Algorithm의 적합도 함수의 결정)

  • Lee, Hyebin;Ruy, WonSun
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.28-35
    • /
    • 2013
  • In this paper, a research on the composition of the nesting algorithm fitness function is carried out by performing various numerical experiments to inspect how it affects the scrap efficiency, allocation characteristics, and time consumption, targeting the nesting results of ship parts. This paper specifically concentrates on a method to minimize the scrap ratio and efficiently use the well-defined remnants of a raw plate after the nesting process for the remnant nesting. Therefore, experiments for various ship parts are carried out with the weighting factor method, one of the multi-objective optimum design methods. Using various weighting factor sets, the nesting results are evaluated in accordance with the above purposes and compared with each set for each ship part groups. Consequently, it is suggested that the nesting algorithm fitness function should be constructed differently depending on the characteristics of the parts and the needs of the users.