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Abstract
In this paper, free surface flows around an advancing two-dimensional rectangular cylinder
piercing the free surface are studied using numerical and experimental methods. Especially,
wave breaking phenomenon around the cylinder is treated in detail. A series of numerical
simulations and experiments were performed for the purpose of comparison.
For the numerical simulations, a finite difference method was adopted with a rectangular grid
system, and the variation of the free surface was computed by the marker density method.
The computational results are compared with the experiments. It is confirmed that the present
numerical method is useful for the numerical simulation of nonlinear free surface waves
around a piercing body.
Keywords: free surface, breaking waves, two-dimensional rectangular cylinder,
two-layer flow, marker density

1 Introduction

Concerned in this paper is the wave breaking which is a phenomenon of flow separation of turbu-
lence, which is not necessarily isotropic, and of the two-phase flow including air-bubble. Since the
breaking of free surface waves often causes significant wave forces on structures, the understand-
ing of the phenomena is very important in the field of naval architecture and ocean engineering.
Many classical theories have been very useful for understanding free surface waves and for
the estimation of the resultant wave forces. However, it ceases to be useful when the above-
mentioned wave breaking plays a significant role, since classical theories are generally based on
linear assumptions. Due to the rapid development of computers, various numerical methods for
viscous rotational flows have been devised based on the MAC(Marker And Cell) method(Welch et
al 1966). Chan and Street(1970) and Hirt and Nichols(1981) modified the original MAC method
for the refined satisfaction of the dynamic and kinematic free surface boundary conditions. Be-
fore the VOE(Volume Of Fluid) method was introduced, earlier numerical techniques to define
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the location of free surface could hardly treat with the large distortion of the free surface. The
VOF method overcame the drawback by allowing steep and multi-valued interface involved with
breaking and merging. However, even in that method the free surface could not be sharply defined.
The boundary element method has been used as one of the effective tools for the free surface wave
problems. Some important works(Longuet-Higgins and Cokelet 1976, Greenhow et al 1982) with
this method have significantly contributed to the better understanding of the mechanism of wave
breaking phenomena. However, these works lose their validity when the overturning wave front
impinges on the free surface beneath the wave fore-front and succeeding complicated motions
become more important. The versatile applicability of the finite difference method in the field of
free surface waves was demonstrated by Harlow and Amsden(1971). However, the details of the
method, especially the technique of the implement of free surface conditions, were not well de-
scribed. Miyata et al.(1986) simulated breaking waves for a submerged circular cylinder under the
free surface in waves by using a finite difference method called TUMMAC-Vbk., However, this
method also loses its validity when it is continuously executed to simulate the flow phenomena af-
ter the wave breaking which includes air-trapping. Many other techniques, such as SPH(Monaghan
1994), marker density technique(Park and Miyata 1994) and level set method(Sussman 1994) have
been developed to simulate sharp and large moving boundary deformation with wave breaking
phenomena.

The computation of the deformation of solitary waves on a sloping beach was performed using
SUMMAC(Chan and Street 1970) and VOF method(Wang and Su 1993). Hino et al.(1984) and
Monaghan(1994) simulated the deformation of periodic waves on a beach using TUMMAC and
SPH, respectively. Heo and Lee(1996) simulated breaking waves on various beach slopes using a
hybrid method, which is a combination of the line segment method and the marker method. Kim
and Lee(2001) simulated breaking waves on a circular cylinder using the marker-density method,

In this paper, various numerical techniques to treat the kinematic free surface boundary con-
dition were briefly summarized and compared before the computation of the breaking waves.
Breaking waves around an advancing rectangular cylinder are numerically simulated. Waves are
generated in front of the advancing rectangular cylinder, and advance faster than the cylinder. The
waves are gradually steepened, then are broken. The marker density method is adopted for the
computation of the free surface waves after the breaking. For various conditions, computation and
experiments were performed for the purpose of comparison.

2 Computational method

2.1 Governing equations

The governing equations for the present computations are the following Navier-Stokes equations
and the continuity equation of two-dimensional incompressible viscous flow.
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where u and w are the velocity components in the = and z direction, respectively. u is the dy-
namic viscosity coefficient, p is the density, and g is the gravitational acceleration. During the
computation of two-phase flow, densities of the water and the air are assumed constant,

2.2 Finite difference method

The governing equations are discretized by using finite differencing schemes in a fixed staggered
variable mesh system. The Adams-Bashforth scheme is adopted for the time derivative terms in
momentum equations. Approximating convection terms, we need a third order upstream scheme,
a second order hybrid scheme and a first order upstream scheme depending upon the number of
neighboring fluid cells. The other spatial derivative terms are discretized by using the centered
differentiating scheme. Pressure distribution is obtained by solving the Poisson equation of pres-
sure and the SOR(Successive Over Relaxation) method is employed to solve the finite difference
version of this equation.

2.3 Body and free surface boundary conditions

No-slip condition is implemented with irreguiar leg length for the calculation of differential terms
around the body surface and flux calculation for divergence zero in a body boundary cell which is
involving the body surface. In each body boundary cell, the velocity and pressure are computed
by a simultaneous iteration method until the pressure is converged. Refer to references 16 and 18
regarding the details of the body boundary conditions.

The dynamic free surface boundary condition is as follows.

P =Dpo on free surface G

where py is the atmospheric pressure.
The kinematic free surface boundary condition is as follows.

D(z —n)

o = 0 on free surface (5)

where 7 is the wave elevation. Refer to reference 17 regarding the details of the free surface
boundary conditions.

2.3.1 Marker density method

When we use the marker and line-segment methods, it is not easy to treat the free surface mo-
tions of the nonlinear character after the wave breaking. Therefore, the marker density method
is adopted in the present computation for the satisfaction of the kinematic free surface boundary
condition with wave breaking,.
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2.3.2 Position of free surface

The following transport equation of the density function is employed for the determination of the
location of the free surface instead of Equation (5).
oM, oM, oM,

0 P _
En +u8z +w 5 =0 6)

The location of the interface between two fluid regions is determined by the following definition
of the free surface with the density function,

—_~ p< 1> + p<2>

M,=M, = 7 on the interface @)

2.3.3 Extrapolation of physical quantity near body Surface

The computation of density function is very difficult in the place where the free surface meets
the body surface. Therefore, the density function value here is determined by extrapolating the
density function value from an adjacent cell to the interface. In fact, the density function value on
the interface is decided using equivalent extrapolation in the horizontal direction as shown in (8).
Figure 1 is the schematic sketch of marker density extrapolation near the free surface.
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Figure 1: Schematic sketch of the marker-density extrapolation near the free surface

2.4 Computational conditions

In the present investigation, the computations are performed for the cases with the following con-
ditions. The breadth of the rectangular cylinder is 0.2m, its height is 0.225m, and its submerged
depth is 0.1m. The submerged depth is defined as the distance from the bottom of the rectangu-
lar cylinder to the free surface of calm water. Stokes’ waves propagating from left to right and
uniform flows are generated by specifying appropriate boundary conditions for u,w at the inflow
boundary. The detailed computational conditions are shown in Table 1 and Table 2. The compu-
tational domain is shown in Figure 2. The length and depth of the domain are 3.0m and 1.6m,
respectively.
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Table 1: Computational condition for a rectangular cylinder piercing free-surface in waves

Wave Length(m) 1.0
Wave Height(m) 0.02 0.04
Inflow B.C. Stokes | Stokes
dxmin(m) 0.0085 | 0.0085
dzmin(m) 0.0035 | 0.0035
dt(sec) 0.001 | 0.001
Computational domain(m) 2.5%1.6

In the case of the incident wave, predicting the occurrence of wave breaking and according to
occurrence or not, it has been divided into two circumstances. Actual calculation done on each
circumstance is as follows. The wave length is 1.0m, the wave amplitudes are 0.02m and 0.04m,
and the period is 1.003sec. The minimum size of mesh is 0.0085m in z direction and 0.0035m in
z direction as shown in Table 1. Stokes’ equations are used for the generation of numerical waves
on the inflow boundary as follows.

_ cosh(z + d) 3 gcosh 2(z + d)

u = c [GWW cos @ + 1 (a'w) W cos 260 (9)
. sinh(z +d) . 3 28inh 2(z +d) .

wo=e [“w sinkd om0 * glaw) g s

where g, k, d, wand c are the wave height, wave number, water depth, wave frequency and
wave celerity, respectively.

In the case of the uniform flow, Froude numbers based on period are 0.5(u=0.496m/s), 0.75(u=0.742m
1.0(u=0.990m/s) and 1.25(u=1.237m/s). The minimum sizes of mesh are from 0.0065 to 0.0085
in z direction and 0.0035 in z direction as shown in Table 2.

2 cases in wave

4 cases in uniform flow

Figure 2: Computational domain and computational conditions
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Table 2: Computational condition for a rectangular cylinder piercing the free-surface in
uniform flows

Fn 05 | 075 | 10 [ 125
Inflow B.C. Uniform Flow
dxmin(m) 0.0085 ] 0.0065 ] 0.0065 | 0.0085
dxmin(m) 0.0035
dt(sec) 0.001 | 0.0002 | 0.0002 | 0.0002
Computational domain(m) | 4.0*1.6 2.5*%1.6

3 Description of experiments

The experiments were carried out in the towing tank of Inha University. The length, width and
water depth of the towing tank are 80m, Sm and 2.7m, respectively. A rectangular channel with
two side walls made of transparent acrylic plastic plate with sharp leading and trailing edges is
used for generating a two-dimensional flow field. The length, height and thickness are 1.6m,
0.625m and 10mm, respectively. Then, a rectangular piercing cylinder which is also made of
transparent acrylic plastic plate is exactly fit in across two side walls of the channel. The length,
breadth, height and thickness are 1.0m, 0.2m, 0.225m and 10mm, respectively. Two circular holes
with a diameter of 10mm each are drilled at the top and bottom ends which let water in and out of
the cylinder and thereby neutralize the buoyancy effect.
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Figure 3: Experimental setup of model and towing tank
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The depth of submergence is 0.1m. The mesh size used in the experiment was decided within
the range that satisfies the accuracy level of calculation predicting the amplitude of the wave that
will be simulated and wave height around a substance. The size is 0.02m. The towing carriage and
the channel are driven with speeds set in advance which are usually expressed as Froude number
based on the submerged depth. In the present experiment, the Froude numbers are 0.5, 0.75, 1.0,
1.25 and 1.5, respectively. Figure 3 shows the experimental setup consisting of the model and the
towing tank.

The measurement of wave elevations along the longitudinal line of the rectangular channel was
carried out using the wave height gage of servo needle type. For the purpose of easy photographing
and measuring the wave profiles and patterns, horizontal and vertical lines with intervals of 2.0cm
were marked on the surface of the transparent acrylic plastic plate of the channel. The photography
of the wave patterns was done by a digital video camera.
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Figure 4: Free surface profiles from the numerical simulation in waves

4 Results of computation and discussions

4.1 A rectangular cylinder in waves

The time-sequence of wave profiles, which is numerically simulated for a rectangular cylinder in
waves, shown in Figure 6, illustrate a comparison between the case without breaking phenomena
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and the case with breaking phenomena on the free surface. In this figure, the time intervals are
0.2 sec and 0.1 sec, and the amplitude of the right-hand side case (wave height is 0.04m.) is
larger than the left-hand side case (wave height is 0.02m.), because an appropriate steep wave is
used in the present study for the simulation of a typical overturning breaker. In the first figure
(T=2.1sec) of each case in Figure 4, the front of the wave generated by the numerical wave-maker
is approaching the rectangular cylinder. Here, T is the time. The time-sequence of wave profiles
for the low amplitude wave is similar to the periodic inflow wave profiles. In the case of the
high amplitude wave, the free surface is deformed into a jump-like configuration in front of the
cylinder as shown in the third and fourth stages in the right-hand side of Figure 4. After that, it
breaks in front of the cylinder, and the wave breaking phenomena are observed in the fifth stage
successively. Therefore, the sequence of wave breaking (steepening of wave-surface—singularity
of wave surface—overturning or spilling) is representatively well observed in this figure.

4.2 A rectangular cylinder in uniform flows

To verify usefulness of the simulation, the numerical & experimental profiles of the free surface
have been compared. The figures from Figure 5 to Figure 16 show comparisons of chronolog-
ically occurred wave profiles and its heights that were produced by experiments and numerical
simulations under the condition of incident velocity at its range from Fn 0.5 to 1.25. However, ar-
eas of experiments and numerical simulations have been confined to the space around rectangular
cylinder due to constraints in them. Wave characteristics and its profiles created by the rectangular
cylinder have varied with incident velocity,

When Fn=0.5, a cyclically created wave has occurred in front of the cylinder. Figure 5 shows
the changing profiles of the free surface around the cylinder as the observed time elapses. Addi-
tionally, in the front wave that occurred in front of the rectangular cylinder is indicated with the
bold lines for easy discernment. Waves occurring cyclically in front of the rectangular cylinder
located in uniform flow have moved forward. Figure 6 shows wave profiles calculated by the nu-
merical simulation, and it shows the similar behavior seen in the experiments. Figure 7 shows a
comparison of the time averaged wave height taken through the experiment and numerical simu-
lation. According to this, values in front of the cylinder show consistent pattern, but those at the
rear of it show very different results. Although this is a low inflow speed condition, behind the
rectangular cylinder, there was difficulty in the simulation of free surface because of the unsteady
flow characteristic of the flow and its complexity. And, the difference between the results of nu-
merical simulation and experiment was large because of the inaccuracy of the measurement since
the absolute value of the measurement of the experiment was small.

When Fn=0.75, a cyclical wave has occurred as it also has at Fn 0.5. Figure 8 presents profiles
of free surface in the experiment. As indicated in the above observation, the wave occurring
cyclically in front of the rectangular cylinder located in uniform flow has moved forward. Figure
9, wave profiles in numerical simulation, identify the result of the experiment. Figure 10 shows
comparison of the averaged time to wave height as Figure 7. According to this, values in front
of the cylinder show somewhat of a consistent pattern, but those at the rear of it also show very
different results, Similar to Fn=0.5, this also is a comparatively low inflow speed which wave does
not occur. However, because of the characteristic of the unsteady flow and from the occurrence
of a more complex flux from increase of speed (compared to the case of Fn=0.5), difference was
seen in the result of simulation and experiment.
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When Fn=1.0, the cyclical wave breaking phenomenon has appeared as different as the above
results. Figure 11 presents profiles of free surface in experiment. Although it is in accordance
with the above observation that the cyclically occurred wave in front of cylinder has moved for-
ward, spilling type of wave breaking has occurred at the points of 30 40cm distant from the center.
Figure 12 shows wave profiles in numerical simulation. In this, the wave breaking phenomenon
as in experiment cannot only be observed, but the spilling type of wave breaking can be also
observed. In addition to this, the cyclical pattern of spilling-typed wave breaking (steeping of
wave-surface—rsingularity of wave-surface—+spilling—impinging—rair-trapping) can be observed
in detail. Figure 13 shows the comparison of the heights of waves. It was verified that the numeri-
cal values from the result of simulation and experiment in front of the cylinder were almost similar.
However, behind the cylinder, becausc of the characteristic of the unsteady flow and from the com-
plexity of the flow, again, it was confirmed that the two results showed a difference. However, that
difference was smaller compared to the case of Fn=0.5 and 0.75, that are slower speeds than the
present speed. Because of faster inflow speed, this is thought as resulting from the occurrence of
waves with longer cycles and relatively large absolute value of measurement,

When Fn=1.25, the cyclical wave breaking phenomenon has also occurred. Figure 14 displays
profiles of free surface in the experiment. In this, the cyclical wave has also occurred in front
of the cylinder as above, but the plunging type of wave breaking phenomenon has occurred in
front of it. Figure 15 displays wave profiles in numerical simulation. According to this, the wave
breaking phenomenon as in experiment has occurred, plus cyclical patiern of plunging-typed wave
breaking phenomenon can be observed in detail (steeping of wave-surface—singularity of wave
surface—overturning—impinging—air-trapping & splashing). Figure 16 presents comparison of
the averaged wave heights. Values in front of cylinder are largely consistent, while those in the
wave breaking area at a 25 35cm distance forward from the center display with the difference
owing to the complicated wave breaking phenomenon. It is shown that values at the rear of cylinder
are somewhat in accordance with those in close around the center. It is thought because problems
in numerical simulation prevent from comparing results out of experiments over a long period. As
discussed above, from the experiment and numerical simulation on rectangular cylinder located in
the free surface, in the case of complicated flow, where the phenomenon of wave breaking occurs,
there is usefulncss of simulations.

When Fn=1.0, the pressure and the vorticity contours by numerical computation are shown in
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Figures 17 and 18. These figures illustrate the nonlinear phenomena of the free surface after the
wave breaking of a nearly spilling type. After the wave breaking, the high pressure and vorticity
are well simulated in these figures.

5 Conclusion

As shown in the present work, the numerical simulation using the marker density method shows
good results which are close to the physical phenomena for the wave breaking around an advanc-
ing rectangular cylinder. Furthermore, wave elevations are simulated with qualitatively fine re-
sults, and from the comparison of time-mean values with experimental results, the present method
seems useful for the simulation of complicated nonlinear waves on the free surface. The following
conclusions are made from this study.

(1) The nonlinear wave breaking on the free surface is well simulated around a two-dimensional
rectangular cylinder, The computed waves in front of the cylinder are in positive agreement
with the experimental results.

(2) It is confirmed that the marker density method is very useful for the numerical simulation
of complex nonlinear free surface phenomena.

(3) By using the marker density method, the wave breaking procedure could be continuously
simulated after the reattachment of the free surface.

(4) The present method is expected to be useful for the simulation of complicated flows in the
field of ocean structure involved with the wave breaking phenomena. In the future, further
research in the present method is necessary for the introduction of the model of turbulence
and free surface impact, and more accurate treatment of the free surface and body boundary
conditions.
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