• Title/Summary/Keyword: Numerical Examples

Search Result 2,849, Processing Time 0.033 seconds

Structural damage detection based on MAC flexibility and frequency using moth-flame algorithm

  • Ghannadi, Parsa;Kourehli, Seyed Sina
    • Structural Engineering and Mechanics
    • /
    • v.70 no.6
    • /
    • pp.649-659
    • /
    • 2019
  • Vibration-based structural damage detection through optimization algorithms and minimization of objective function has recently become an interesting research topic. Application of various objective functions as well as optimization algorithms may affect damage diagnosis quality. This paper proposes a new damage identification method using Moth-Flame Optimization (MFO). MFO is a nature-inspired algorithm based on moth's ability to navigate in dark. Objective function consists of a term with modal assurance criterion flexibility and natural frequency. To show the performance of the said method, two numerical examples including truss and shear frame have been studied. Furthermore, Los Alamos National Laboratory test structure was used for validation purposes. Finite element model for both experimental and numerical examples was created by MATLAB software to extract modal properties of the structure. Mode shapes and natural frequencies were contaminated with noise in above mentioned numerical examples. In the meantime, one of the classical optimization algorithms called particle swarm optimization was compared with MFO. In short, results obtained from numerical and experimental examples showed that the presented method is efficient in damage identification.

STABLE NUMERICAL DIFFERENTIATION: WHEN IS IT POSSIBLE?

  • Ramm, Alexander G.;Smirnova, Alexandra
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.7 no.1
    • /
    • pp.47-61
    • /
    • 2003
  • Two principally different statements of the problem of stable numerical differentiation are considered. It is analyzed when it is possible in principle to get a stable approximation to the derivative ${\Large f}'$ given noisy data ${\Large f}_{\delta}$. Computational aspects of the problem are discussed and illustrated by examples. These examples show the practical value of the new understanding of the problem of stable differentiation.

  • PDF

Probabilistic approximations based on GPH distributions (GPH 분포에 의한 확률적 근사화)

  • 윤복식;박광우;이창훈
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.19 no.1
    • /
    • pp.85-98
    • /
    • 1994
  • The distribution of random sum of i. i. d. exponential random variables is called GHP (Generalized Phase-Type) distribution. The class of GPH distributions is large enough to include PH (Phase-Type) distributions and has several properties which can be applied conveniently for computational purposes. In this paper, we show that any distribution difined on R$^{+}$ can be app-roximated by the GPH distribution and demonstrate the accuracy of the approximation through various numerical examples. Also, we introduce an efficient way to compute the delay and waiting various numerical examples. Also, we introduce an efficient way to compute the delay and waiting time distributions of the GPH/GPH/1 queueing system which can be used as an approximation model for the GI/G/1 system, and validate its accuracy through numerical examples. The theoretical and experimental results of this paper help us accept the usefulness of the approximations based on GPH distribution.n.

  • PDF

A Topological Derivative Based Non-Iterative Electromagnetic Imaging of Perfectly Conducting Cracks

  • Ma, Yong-Ki;Park, Won-Kwang
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.1
    • /
    • pp.128-134
    • /
    • 2012
  • In this manuscript, we consider electromagnetic imaging of perfectly conducting cracks completely hidden in a homogeneous material via boundary measurements. For this purpose, we carefully derive a topological derivative formula based on the asymptotic expansion formula for the existence of a perfectly conducting inclusion with a small radius. With this, we introduce a topological derivative based imaging algorithm and discuss its properties. Various numerical examples with noisy data show the effectiveness and limitations of the imaging algorithm.

Optimal Inspection Plan for a Flexible Assembly Line

  • Yoo, Seuck-Cheun
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.18 no.1
    • /
    • pp.97-117
    • /
    • 1993
  • This paper considers inspection station location problem for a flexible assembly line that consists of multiple stages. By considering the trade-off between locating an station at an "early" stage and at a "late" stage, we have developed some dominance relations on a graph. Based on the dominance relations, we then present an algorithm that finds an optimal inspection plan and a heuristic approach that finds a near-optimal inspection plan. The effectiveness of these two algorithms is demonstrated by two numerical examples. numerical examples.

  • PDF

Finite element analysis of flow with moving free surface by volume of fluid method (VOF 방법에 의한 이동하는 자유표면이 존재하는 유동의 유한요소 해석)

  • Sin, Su-Ho;Lee, U-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.9
    • /
    • pp.1230-1243
    • /
    • 1997
  • A numerical technique for simulating incompressible viscous flow with free surface is presented. The flow field is obtained by penalty finite element formulation. In this work, a modified volume of fluid (VOF) method which is compatible with 4-node element is proposed to track the moving free surface. This scheme can be applied to irregular mesh system, and can be easily extended to three dimensional geometries. Numerical analyses were done for two benchmark examples, namely the broken dam problem and the solitary wave propagation problem. The numerical results were in close agreement with the existing data. Illustrative examples were studied to show the effectiveness of the proposed numerical scheme.

Spectra and numberical ranges

  • Yang, Youngoh
    • Bulletin of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.427-434
    • /
    • 1996
  • The theory of numerical ranges in unital normed algebras has extensively studied by many authors, for examples, see [1], [2] for details.

  • PDF

An unstructured finite volume method for unsteady incompressible flows with full second order accuracy (2차 정확도를 가지는 비정상 비압축성 유동장 해석을 위한 비정렬 유한 체적법의 개발)

  • Lee K. S.;Baek J. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.71-76
    • /
    • 2004
  • An extension of our recently developed locally linear reconstruction scheme to 2 dimensional incompressible flow solver is presented. The solver is based on a semi-implicit fractional step method in which the convective term is discretized by Adams-Bashforth method and the diffusion term by Crank-Nicolson method. Several numerical examples are tested to demonstrate the mesh type independent accuracy of the solver, which include decaying vortex flow, square cavity flow, and flow around a circular cylinder. The above examples are solved on quadrilateral or hybrid meshes. For all numerical examples, we obtained reasonable results.

  • PDF

A CONSISTENT DISCONTINUOUS BUBBLE SCHEME FOR ELLIPTIC PROBLEMS WITH INTERFACE JUMPS

  • KWONG, IN;JO, WANGHYUN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.24 no.2
    • /
    • pp.143-159
    • /
    • 2020
  • We propose a consistent numerical method for elliptic interface problems with nonhomogeneous jumps. We modify the discontinuous bubble immersed finite element method (DB-IFEM) introduced in (Chang et al. 2011), by adding a consistency term to the bilinear form. We prove optimal error estimates in L2 and energy like norm for this new scheme. One of the important technique in this proof is the Bramble-Hilbert type of interpolation error estimate for discontinuous functions. We believe this is a first time to deal with interpolation error estimate for discontinuous functions. Numerical examples with various interfaces are provided. We observe optimal convergence rates for all the examples, while the performance of early DB-IFEM deteriorates for some examples. Thus, the modification of the bilinear form is meaningful to enhance the performance.

Determination of Residual Stress by the Hole Drilling Method Based on Displacement Measurement (변위 측정을 기본으로 한 구멍뚫기방법에 의한 잔류응력 측정 방법)

  • Shin, Dong Il;Joo, Jin Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.11 s.242
    • /
    • pp.1542-1550
    • /
    • 2005
  • This paper presents the numerical procedure for calculating non-uniform residual stresses based on relieved displacements obtained from incremental hole drilling. The relationship between the in-plane displacement produced by introducing a blind hole and the corresponding residual stress is established. Finite element calculations are described to evaluate the relieved coefficients required for the determination of non-uniform residual stresses. Validity of the proposed method has been tested through three axisymmetric test examples and two three-dimensional examples. As a result of . simulation on the test examples, it is found that this numerical procedure is well adopted to measuring non-uniform residual stress in the full hole depth range of the hole diameter from the surface. The accuracy of the hole drilling method with displacement measurement is discussed, comparing tile method with strain measurement