• Title/Summary/Keyword: Number of Holes

Search Result 386, Processing Time 0.03 seconds

Effects of Baffles on Heat Transfer and Friction Factors in a Rectangular Channel (사각채널에 설치된 배플이 열전달과 마찰계수에 미치는 효과)

  • Ahn, Soo-Whan;Kang, Ho-Keun;Bae, Sung-Taek;Song, Min-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.693-701
    • /
    • 2006
  • The present work investigates the local heat transfer characteristics and the associated frictional loss in a rectangular channel with inclined solid and perforated baffles to obtain the basic design data for gas turbine. Five different geometries of baffles such as 1) solid (without hole), 2) three holes, 3) six holes, 4) nine holes, 5) twelve holes were covered. A combination of two baffles of same overall size is used. The flow Reynolds number is ranged from 28,900 to 70,100. The placement of baffles augments the overall heat transfer greatly by combining both jet impingement and the boundary layer separation. The present results show that the average Nusselt number distribution is strongly dependent on number of holes in the baffle plates, i.e., the average Nusselt number increases with increasing number of holes. The friction factor decreases also with increasing the number of holes. however. its value increases with increasing the Reynolds number.

Comparison of the amount of bacteria according to the number of holes between bristles (칫솔모 사이에 형성한 구멍 수에 따른 세균 양 변화)

  • Kang, Kyung-Hee;Kang, So-Hyeon;Kim, So-Hee;Kim, Ji-Ho;Baek, Su-Jeong;Seo, Hyeon-Ji;Yun, Hae-Yeon;Goong, Hwa-Soo
    • Journal of Korean Academy of Dental Administration
    • /
    • v.6 no.1
    • /
    • pp.19-27
    • /
    • 2018
  • The purpose of this study was to determine the level of toothbrush bacterial growth, whether the dryness of the toothbrush head differs depending on the number of holes in the head, and to use these results as a reference for future toothbrush design. Two-millimeter holes were created on the head of the toothbrushes in groups of three, one, or zero holes. We made the solution with Streptococcus mutans, and the toothbrushes were placed in the solution and agitated. The toothbrushes were shaken to remove moisture and allowed to air-dry. The toothbrush heads were swabbed with saline and then placed in two inoculation groups. The first group was inoculated with a 102 dilution of the S. mutans culture and the second was inoculated with the original culture. After incubation, bacterial colony numbers were measured. The number of holes on the toothbrush head correlated with a decrease in number of cultured bacterial colonies. Our model of a toothbrush head with holes indicated that these holes in the toothbrush head were effective in reducing the level of microbial contamination and that a greater number of holes creates an improved toothbrush sanitation effect. The average number of colonies on the head of toothbrush by number of holes was high, followed by the number of holes 0, 1 and 3, and the average number of colony among toothbrush heads was same. The use of a toothbrush with holes between the toothbrush head indicates that it is effective in reducing the level of microbial contamination between the toothbrush head and toothbrush and the higher the number of holes, the better the effect.

The effect of the number of nozzle holes on the energy separation (보텍스튜브의 노즐홀수가 에너지분리에 미치는 영향)

  • 유갑종;이진호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.5
    • /
    • pp.692-699
    • /
    • 1999
  • The vortex tube is a sample device for separating a compressed gaseous fluid stream into two flows of high and low temperature without any chemical reactions. The phenomena of energy separation through the vortex tube were investigated experimentally, to see the effects of the number of nozzle holes on the energy separation. The experiment was carried out with the number of nozzle holes from 1 to 10 by varying inlet pressure and cold mass fraction. The experimental results were indicated that the effective number of nozzle holes for the best cooling performance was found as 4. Also, to find effective use in a given operation conditions, the temperature difference of cold air and the cooling capacity of vortex tube was compared. The result is that cooling capacity was more important than temperature difference of cold air.

  • PDF

A Multiple Planting in a Hole for Producing an Aromatic Tobacco Variety, Sohyang(Nicotiana tabacum L.) (향끽미품종담배의 식혈간 거리와 식혈당 주수가 수량 및 품질에 미치는 영향)

  • 정기택;변주섭
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.3 no.1
    • /
    • pp.58-65
    • /
    • 1981
  • This study was carried out to investigate the influence of distance of planting holes (51, 45, and 40 cm) and number of plants per a hole(4, 5, 6 plants) on agronomic characteristics, yield, and quality of an aromatic tobacco, Sohyang. The results are as follows: 1. Relative light intensity increased by widening the distance of holes. 2. Leaf area per a plant or per a leaf, and leaf length and width increased by widening the distance of holes and decreased by increasing the number of plants per a hole. But L. A. 1. increased by increasing the number of plants per a hole. Leaf shape index (Leaf length/Leaf width) showed little differences among treatments. 3. Dry weight of leaf, root, and stem per a plant decreased by increasing the number of plants per a hole. 4. Total nitrogen decreased by increasing number of plants per a hole and in the case of narrow distance of holes, but nicotine, reducing sugar, ether-extract and ash showed little differences. 5. Yield per 10a decreased by widening the distance of holes. 6. Quality(price per kg) was improved by increasing the number of plants per a hole at the Plot of 51m distance of holes. But there was no variation at the Plot of 45cm. And quality was decreased at the plot of 40cm distance of holes by increasing the number of Plants per a hole. 7. Price per 10a was highest in the plot of which plant spacing was $90\times$40cm and the number of plants per a hole was 4 (11112 plant/10a).

  • PDF

Heat Transfer and Friction Factors in the Channel with an Inclined Square Diamond Type Perforated Baffle (정 다이아몬드 형 구멍이 있는 배플을 가진 채널에서의 열전달과 마찰계수)

  • Oh, S.K.;Putra, A.B.K.;Ahn, S.W.
    • Journal of Power System Engineering
    • /
    • v.12 no.3
    • /
    • pp.26-31
    • /
    • 2008
  • This experimental study investigates the local heat transfer enhancement characteristics and the associated frictional head loss in the rectangular channel with a single inclined baffle. Four different types of the baffle are used. The inclined baffles have the width of 19.8 cm, the square diamond of $2.55cm{\times}2.55cm$, and the inclination angle of 5o, and number of holes of up to 9. Reynolds number is varied between 23,000 and 57,000. Results show that the heat transfer and friction factor depend significantly on the number of baffle holes and Reynolds number. The friction factor decreases with increasing Reynolds number and the number of holes on the baffle. It is found that the heat transfer performance of baffle type II(3 hole baffle) has the best values.

  • PDF

Design optimization of the outlet holes for bone crystal growing with bioactive materials in dental implants: Part I. cross-sectional area

  • Lee, Yong Keun;Lee, Kangsoo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.2
    • /
    • pp.67-75
    • /
    • 2013
  • In order to improve osseo-integration of a dental implant with bone crystal we studied an implant with holes inside its body to deliver bioactive materials based on a proposed patent. After bioactive material is absorbed, bone crystal can grow into holes to increase implant bonding in addition to surface integration. The larger cross section area of outlet holes showed the less values of the maximum stress, and the stress concentrations near the uppermost outlet holes were also reduced with an increasing number of outlet holes. The conclusion, that the uppermost outlet design improvement was most effective to reduce the stress concentration and improve the growth rate of bone crystal, could be drawn. After the design optimizations, Type 6-C had provided the best results in this study. The overall shape optimization studies on the shape, location, number, and so on, of the outlet holes, should be carried out further.

Simulation of fracture mechanism of pre-holed concrete model under Brazilian test using PFC3D

  • Sarfarazi, Vahab;Haeri, Hadi;Shemirani, Alireza Bagher
    • Smart Structures and Systems
    • /
    • v.22 no.6
    • /
    • pp.675-687
    • /
    • 2018
  • In the previous studies on the porous rock strength the effect of pore number and its diameter is not explicitly defined. In this paper crack initiation, propagation and coalescence in Brazilian model disc containing a single cylindrical hole and or multiple holes have been studied numerically using PFC3D. In model with internal hole, the ratio of hole diameter to model diameter was varied between 0.03, 0.17, 0.25, 0.33, and 0.42. In model with multiple hole number of holes was different in various model, i.e., one hole, two holes, three holes, four holes, five holes, six holes, seven holes, eight holes and nine holes. Diameter of these holes was 5 mm, 10 mm and 12 mm. The pre-holed Brazilian discs are numerically tested under Brazilian test. The breakage load in the ring type disc specimens containing an internal hole with varying diameters is measured. The mechanism of cracks propagation in the wall of the ring type specimens is also studied. In the case of multi-hole Brazilian disc, the cracks propagation and b cracks coalescence are also investigated. The results shows that breaking of the pre-holed disc specimens is due to the propagation of radially induced tensile cracks initiated from the surface of the central hole and propagating toward the direction of diametrical loading. In the case of disc specimens with multiple holes, the cracks propagation and cracks coalescence may occur simultaneously in the breaking process of model under diametrical compressive loading. Finally the results shows that the failure stress and crack initiation stress decreases by increasing the hole diameter. Also, the failure stress decreases by increasing the number of hole which mobilized in failure. The results of these simulations were comprised with other experimental and numerical test results. It has been shown that the numerical and experimental results are in good agreement with each other.

TIDAL EVOLUTION OF GLOBULAR CLUSTERS: THE EFFECTS OF GALACTIC TIDAL FIELD, DIFFUSION AND BLACK HOLES

  • OH KAP SOO
    • Journal of The Korean Astronomical Society
    • /
    • v.27 no.1
    • /
    • pp.61-76
    • /
    • 1994
  • We investigate the dynamical evolution of globular clusters under the diffusion, the Galactic tide, and the presence of halo black holes. We compare the results with our previous work which considers the diffusion processes and the Galactic tide. We find the followings: (1) The black holes contribute the expansion of the outer part of the cluster. (2) There is no evidence for dependence on the orbital phase of the cluster as in our previous work. (3) The models of linear and Gaussian velocity distribution for the halo black holes do not show any significant differences in all cases. (4) The perturbation of black holes reduces the number of stars in lower energy regions. (5) There is a significant number of stars with retrograde orbits beyond the cutoff radius especially in the case of diffusion and the perturbation of black holes.

  • PDF

A Study on the Characteristics of Blasting Vibration by Superposition Modeling (중첩 모델링을 통한 발파진동의 특성에 관한 연구)

  • Kang, Choo-Won;Kim, Seung-Hyun;Park, Hyun-Sik
    • Tunnel and Underground Space
    • /
    • v.16 no.4 s.63
    • /
    • pp.326-333
    • /
    • 2006
  • In this study, the vibration waveform of the single hole which is not interfered from the different blasting holes is separated, the each dominant frequency which is determinated through the Fast Fourier Transform(FFT) is measured. Also the separation waveform executed a superposition modeling which changes to delay time from 1ms to 80 ms in 1ms interval and controls the number of blasting holes from 2 holes to 15 holes in order to investigate the effect of PPV according to the duration time of the vibration and the number of blasting holes. As a result of analysis, the longer the duration time of the vibration, the longer the delay time which is not interfered from the different blasting holes and the effect regarding the number of blasting holes from inside identical delay time did not appear a lot.

Creep characteristics and instability analysis of concrete specimens with horizontal holes

  • Xin, Yajun;Hao, Haichun;Lv, Xin;Ji, Hongying
    • Computers and Concrete
    • /
    • v.22 no.6
    • /
    • pp.563-572
    • /
    • 2018
  • Uniaxial compressive strength test and uniaxial compression creep one were produced on four groups of twelve concrete specimens with different hole number by RLW-2000 rock triaxial rheology test system. The relationships between horizontal holes and instantaneous failure stress, the strain, and creep failure stress, the strain, and the relationships between stress level and instantaneous strain, creep strain were studied, and the relationship between horizontal holes and failure mode was determined. The results showed that: with horizontal hole number increasing, compressive strength of the specimens decreased whereas its peak strain increased, while both creep failure strength and its peak strain decreased. The relationships between horizontal holes and compressive strength of the specimens, the peak strain, were represented in quadratic polynomial, the relationships between horizontal holes and creep failure strength, the peak strain were represented in both linear and quadratic polynomial, respectively. Instantaneous strain decreased with stress level increasing, and the more holes in the blocks the less the damping of instantaneous strain were recorded. In the failure stress level, instantaneous strain reversally increased, creep strain showed three stages: decreasing, increasing, and sharp increasing; in same stress level, the less holes the less creep strain rate was recorded. The compressive-shear failure was produced along specimen diagonal line where the master surface of creep failure occurred, the more holes in a block, the higher chances of specimen failure and the more obvious master surface were.