• 제목/요약/키워드: Number of Actuator

검색결과 148건 처리시간 0.031초

헬리콥터 로터 공력해석을 위한 수치적 방법 연구 (THE INVESTIGATION OF HELICOPTER ROTOR AERODYNAMIC ANALYSIS METHODS)

  • 박남은;우철훈;노현우;김철호;이석준
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 춘계 학술대회논문집
    • /
    • pp.120-124
    • /
    • 2007
  • Helicopters and rotary-wing vehicles encounter a wide variety of complex aerodynamic phenomena and these phenomena present substantial challenges for computational fluid dynamics(CFD) models. This investigation presents the rotor aerodynamic analysis items for the helicopter development and variety aerodynamic analysis methods to provide the better solution to researchers and helicopter developers between aerodynamic problems and numerical aerodynamic analysis methods. The numerical methods to make an analysis of helicopter rotor are as below - CFD Modelling : actuator disk model, BET model, fully rotor model,... - Grid : sliding mesh, chimera mesh / structure mesh, unstructure mesh,... - etc. : panel method periodic boundary, quasi-steady simulation, incompressible,... The choice of CFD methodology and the numerical resolution for the overall problem have been driven mostly by available computer speed and memory at any point in time. The combination of the knowledge of aerodynamic analysis items, available computing power and choice of CFD methods now allows the solution of a number of important rotorcraft aerodynamics design problems.

  • PDF

Designing a Vibrotactile Reading System for Mobile Phones

  • Chu, Shaowei;Zhu, Keying
    • Journal of Information Processing Systems
    • /
    • 제14권5호
    • /
    • pp.1102-1113
    • /
    • 2018
  • Vibrotactile feedback is widely used in designing non-visual interactions on mobile phones, such as message notification, non-visual reading, and blind use. In this work, novel vibrotactile codes are presented to implement a non-visual text reading system for mobile phones. The 26 letters of the English alphabet are formed in an index table with four rows and seven columns, and each letter is mapped using the codes of vibrations. Two kinds of vibrotactile codes are designed with the actuator's on and off states and with specific lengths (short and long) assigned to each state. To improve the efficiency of tactile perception and user satisfaction, three user experiments are conducted. The first experiment explores the maximum number of continuous vibrations and minimum vibration time of the actuator's on and off states that the human can perceive. The second experiment determines the minimum interval between continuous vibrations. The vibrotactile reading system is designed and evaluated in the third experiment according to the results of the two preceding experiments. Results show that the character reading accuracy reaches 91.7% and the character reading speed is approximately 617.8 ms. Our method has better reading efficiency and is easier to learn than the traditional Braille coding method.

Static analysis of a multilayer piezoelectric actuator with bonding layers and electrodes

  • Xiang, H.J.;Shi, Z.F.
    • Smart Structures and Systems
    • /
    • 제5권5호
    • /
    • pp.547-564
    • /
    • 2009
  • Based on the theory of piezoelasticity, an analytical solution for a typical multilayer piezoelectric composite cantilever is obtained by the Airy function method. The piezoelectric cantilever may consist of any number of layers. Moreover, the material and thickness for different layers may be different. The solution obtained in the present paper is concise and can be easily applied for the bending analysis of multilayer piezoelectric actuators considering the effect of bonding layers and electrodes. At last, a comprehensive parametric study is conducted to show the influence of electromechanical coupling (EMC), the number of piezoelectric layers, the elastic modulus of elastic layer and the thickness ratio on the bending behavior of actuators. Some interesting results for the design of multilayer piezoelectric actuators are presented.

양변위 되먹임 제어기의 안정성, 제어 성능 및 설계 방법 (The Stability Conditions, Performance and Design Methodology for the Positive Position Feedback Controller)

  • 곽문규;한상보;허석
    • 한국소음진동공학회논문집
    • /
    • 제14권3호
    • /
    • pp.208-213
    • /
    • 2004
  • This paper is concerned with the theoretical estimation of the single-input single-output(SISO) positive position feedback(PPF) controller and the derivation of the stability conditions for the multi-input multi-output (MIMO) PPF controller. Although the stability condition for the SISO PPF controller was derived in the earlier works, the question regarding the performance estimation of the SISO PPF controller has never been studied theoretically. Hence, the SISO PPF controller for the single degree-of-freedom system was first investigated and then control parameters including gain, the filter frequency, and the damping factor of the PPF controller were analyzed in detail thus providing the design methodology for the SISO PPF controller. In the case of real structure. there are infinite number of natural modes so that some modes are to be controlled by a limited number of actuator and sensor. Based on the theoretical results on the SISO PPF controller, the stability condition for the multi-input multi-output PPF controller was derived when only the few number of modes are to be controlled. The control spillover problem is also discussed in detail.

2자유도 승마로봇 제어를 위한 동작특성분석 (Motion analysis for control of a 2-DOF horse riding robot)

  • 서동진;전세웅;김영욱;고낙용
    • 로봇학회논문지
    • /
    • 제6권3호
    • /
    • pp.263-273
    • /
    • 2011
  • This paper analyzes the motion of a horseback riding robot which has two actuators and three joints. It is impossible to control the saddle to get to any position and orientation using the two motors because the robot has less degrees of freedom than the number of joints. Therefore it is required to know the possible location and orientation along with the velocity characteristics of each pose prior to motion planning. For this purpose, this paper analyzes the characteristics of the robot motion. The authors derive the forward and inverse kinematics of the robot motion and developed the trajectory editor for motion planning. Also, Jacobian of the robot is analyzed. It reveals that one of the actuator has little influence to the speed of the saddle motion while the other affects the speed of the saddle motion dominantly. The approach of the paper can be applied for the analysis of characteristics of a robot which has less number of actuators than that of joints.

Behavior Learning of Swarm Robot System using Bluetooth Network

  • Seo, Sang-Wook;Yang, Hyun-Chang;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제9권1호
    • /
    • pp.10-15
    • /
    • 2009
  • With the development of techniques, robots are getting smaller, and the number of robots needed for application is greater and greater. How to coordinate large number of autonomous robots through local interactions has becoming an important research issue in robot community. Swarm Robot Systems (SRS) is a system that independent autonomous robots in the restricted environments infer their status from pre-assigned conditions and operate their jobs through the cooperation with each other. In the SRS, a robot contains sensor part to percept the situation around them, communication part to exchange information, and actuator part to do a work. Especially, in order to cooperate with other robots, communicating with other robots is one of the essential elements. Because Bluetooth has many advantages such as low power consumption, small size module package, and various standard protocols, it is rated as one of the efficient communicating technologies which can apply to small-sized robot system. In this paper, we will develop Bluetooth communicating system for autonomous robots. And we will discuss how to construct and what kind of procedure to develop the communicating system for group behavior of the SRS under intelligent space.

인공근육형 LIPCA를 이용한 물고기 모방 로봇의 설계, 제작 및 실험 (Mechanical Design Fabrication and Test of a Biomimetic Fish Robot Using LIPCA as an Artificial Muscle)

  • 허석;테디 위구나;구남서;박훈철
    • 대한기계학회논문집A
    • /
    • 제31권1호
    • /
    • pp.36-42
    • /
    • 2007
  • This paper presents mechanical design, fabrication and test of a biomimetic fish robot actuated by a unimorph piezoceramic actuator, LIPCA(Lightweight Piezo-Composite curved Actuator.) We have designed a linkage mechanism that can convert bending motion of the LIPCA into the caudal fin movement. This linkage system consists of a rack-pinion system and four-bar linkage. Four types of artificial caudal fins that resemble caudal fin shapes of ostraciiform subcarangiform, carangiform, and thunniform fish, respectively, are attached to the posterior part of the robotic fish. The swimming test under 300 $V_{pp}$ input with 0.6 Hz to 1.2 Hz frequency was conducted to investigate effect of tail beat frequency and shape of caudal fin on the swimming speed of the robotic fish. At the frequency of 0.9 Hz, the maximum swimming speeds of 1.632 cm/s, 1.776 cm/s, 1.612 cm/s and 1.51 cm/s were reached for fish robots with ostraciiform, subcarangiform carangiform and thunniform caudal fins, respectively. The Strouhal number, which means the ratio between unsteady force and inertia force, or a measure of thrust efficiency, was calculated in order to examine thrust performance of the present biomimetic fish robot. The calculated Strouhal numbers show that the present robotic fish does not fall into the performance range of a fast swimming robot.

다물체 동역학 시뮬레이션을 이용한 작동기용 기어박스 가속시험법 검증 (Validation of Actuator Gearbox Accelerated Test Method Using Multi-Body Dynamics Simulation)

  • 이동건;문상곤;박영준;심우람;심성보;김수철
    • 드라이브 ㆍ 컨트롤
    • /
    • 제21권1호
    • /
    • pp.22-30
    • /
    • 2024
  • Gearboxes designed for reciprocating motion operating mechanisms operate under conditions where both the load and speed undergo continuous variations. When conducting durability tests on gearboxes designed for such applications, operating the target gearbox under conditions similar to the intended usage is essential. The gearbox must be operated for the required number of cycles to validate its durability under conditions mirroring its intended usage. This study devised an accelerated test method for gearboxes, which reduces operating angles and operational strokes. The reliability of the accelerated test was verified by comparing the stresses imposed on the gears under general and acceleration conditions through multi-body dynamic simulations. The results confirmed that the maximum contact stress levels under normal and accelerated conditions were within a 0.1% error range, indicating a minimal difference in the gear damage rates. However, a difference in the maximum contact stress results between the normal and accelerated conditions was observed when inertial forces acted on the output shaft due to the operational acceleration of the gearbox. Therefore, when conducting this acceleration test, caution should be exercised to ensure that the operational load on the gearbox, which affects inertia, does not significantly deviate from the conditions observed under normal operating conditions.

디지털카메라의 자동초점제어를 위한 피에조 구동회로의 설계 (A Design of Piezo Driver IC for Auto Focus Camera System)

  • 이준성
    • 전기전자학회논문지
    • /
    • 제14권3호
    • /
    • pp.190-198
    • /
    • 2010
  • 피에조소자를 구동하여 자동카메라의 초점을 자동으로 제어하는 시스템에서 피에조를 구동하는 집적회로를 설계하였다. 가공된 피에조에 변위를 만들기 위해서는 고전압 DC가 필요하다. 휴대형기기에서 사용하는 3[V]~4.2[V]정도의 낮은 전원전압을 약 80[V]로 승압하여 피에조 구동전압으로 제공하는 한편 입력되는 1[Vp-p]의 제어신호를 -20[V]에서 +80[V]까지 조절되도록 설계하였다. 또한 IC 외부에 적용되는 소자가 최소가 되도록 하여 시스템의 전체 크기를 줄일 수 있도록 하였다. 제어용 프로세서로 IIC(Inter-IC) 인터페이스를 적용하기 위하여 구동회로 내부에 IIC 인터페이스 디지털 로직을 내장하였는데, 이는 제품의 검증, 양산시 양품판정을 쉽게 해주는 장점이 있다. 제작공정은 AMIS 사의 I2T100 2P_3M 공정을 사용하였는데 0.6[um], 100[V]급 BCD공정이며, 6INCH 웨이퍼를 사용하였다. 전원전압 3.6[V], 소비전력은 약 40[mW]정도이다. 칩 사이즈는 1600*1500 [$um^2$]이며, 칩을 소형패키지에 내장하여 조립하였기 때문에 휴대형기기에 적용이 편리하게 되어있다.

구조물의 모델링 불확실성을 고려한 강인제어실험 (Experimental Study of Robust Control considering Structural Uncertainties)

  • 민경원
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2000
    • /
    • pp.501-508
    • /
    • 2000
  • It is demanded to find the dynamic model of a real structure to design a controller. However, as the structure has inherently infinite number of degree-of-freedom, it is impossible to obtain an exact dynamic model of the structure. Instead a reduction model with finite degree-of-freedom is used for the design of a controller. So there exists uncertainty between a real model and a reduction model which causes poor performance of control. All these uncertainties can degrade the control performance and even cause the control instability. Thus, robust control strategy considering the above uncertainties can be an alternative one to guarantee the performance and stability of the control. This study deals with the experimental verification of robust controller design for the active mass driver. $\mu$-synthesis technique is employed as a robust control strategy. Some weights are chosen based on the difference between the initial plant with which the controller is designed and the perturbed plant to be controlled having the actuator uncertainty. The robustness of $\mu$-synthesis technique is compared with the result of LQG strategy, which does not consider the uncertainty.

  • PDF