• Title/Summary/Keyword: Nuclease

Search Result 135, Processing Time 0.026 seconds

Structure and Regulation of a Complex Promoter Region from an Alkali-tolerent Bacillus sp.

  • Kim, Jin-Man;Park, Hee-Kyung;Park, Young-Seo;Yum, Do-Young;Bai, Dong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.3 no.3
    • /
    • pp.146-155
    • /
    • 1993
  • A DNA fragment from an alkali-tolerent Bacillus sp., conferring strong promoter activity, was subcloned into the promoter probe plasmid pPL703 and the nucleotide sequence of this promoter region was determined. The sequence analysis suggested that this highly efficient promoter region containing the complex clustered promoters comprised three kinds of promoters (P1, P2 and P3), which are transcribed by $\sigma^B (formerly \sigma^{37}), \sigma^E(formerly \sigma^{29}) and \sigma^A (formerly \sigma^{43})$ RNA polymerase holoenzymes which play major rules at the onset of endospore formation, during sporulation and at the vegetative phase of growth, respectively. S1 nuclease mapping experiments showed that all three promoters had staggered transcription initiation points. The results of chloramphenicol acetyltransferase assay after the subcloning experiments also indicated that the expression of these clustered promoters was correlated with the programs of growth and endospore development. Promoter P1, P2 and P3 were preceded by 75% AT, 79% AT and 81% AT regions, respectively, and a partial deletion of AT-rich region prevented transcription from promoter P1 in vivo. Two sets of 5 -AGTGTT-3 sequences and inverted repeat sequences located around the promoter P1 were speculated as the possible cis acting sites for the catabolite repression in B. subtilis. In vivo transcripts from these sequence regions may be able to form a secondary structure, however, the possibility that a regulatory protein induced by the excess amount of glucose could be bound to such a domain for crucial action remains to be determined.

  • PDF

Formation of DNA-protein Cross-links Mediated by C1'-oxidized Abasic Lesion in Mouse Embryonic Fibroblast Cell-free Extracts

  • Sung, Jung-Suk;Park, In-Kook
    • Animal cells and systems
    • /
    • v.9 no.2
    • /
    • pp.79-85
    • /
    • 2005
  • Oxidized abasic residues arise as a major class of DNA damage by a variety of agents involving free radical attack and oxidation of deoxyribose sugar components. 2-deoxyribonolactone (dL) is a C1'-oxidized abasic lesion implicated in DNA strand scission, mutagenesis, and covalent DNA-protein cross-link (DPC). We show here that mammalian cell-free extract give rise to stable DPC formation that is specifically mediated by dL residue. When a duplex DNA containing dL at the site-specific position was incubated with cell-free extracts of Po ${\beta}-proficient$ and -deficient mouse embryonic fibroblast cells, the formation of major dL-mediated DPC was dependent on the presence of DNA polymerase (Pol) ${\beta}$. Formation of dL-specific DPC was also observed with histones and FEN1 nuclease, although the reactivity in forming dL-mediated DPC was significantly higher with Pol ${\beta}$ than with histones or FEN1. DNA repair assay with a defined DPC revealed that the dL lesion once cross-linked with Pol ${\beta}$ was resistant to nucleotide excision repair activity of cell-free extract. Analysis of nucleotide excision repair utilizing a model DNA substrate containing a (6-4) photoproduct suggested that excision process for DPC was inhibited because of DNA single-strand incision at 5' of the lesion. Consequently DPC mediated by dL lesion may not be readily repaired by DNA excision repair pathway but instead function as unusual DNA damage causing a prolonged DNA strand break and trapping of the major base excision repair enzyme.

GSTP1, ERCC1 and ERCC2 Polymorphisms, Expression and Clinical Outcome of Oxaliplatin-based Adjuvant Chemotherapy in Colorectal Cancer in Chinese Population

  • Li, Hui-Yan;Ge, Xin;Huang, Guang-Ming;Li, Kai-Yu;Zhao, Jing-Quan;Yu, Xi-Miao;Bi, Wen-Si;Wang, Yu-Lin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.7
    • /
    • pp.3465-3469
    • /
    • 2012
  • Aim: Platinum agents have shown to be effective in the treatment of colorectal cancer. We assessed whether single nucleotide polymorphisms (SNPs) in GSTP1, ERCC1 Asn118Asn and ERCC2 Lys751Gln might predict the overall survival in patients receiving oxaliplatin-based chemotherapy in a Chinese population. Methods: SNPs of GSTP1, ERCC1 Asn118Asn and ERCC2 Lys751Gln in 335 colorectal cancer patients were assessed using TaqMan nuclease assays. Results: At the time of final analysis on Nov. 2011, the median follow-up period was 37.7 months (range from 1 to 60 months). A total of 229 patients died during follow-up. Our study showed GSTP1 Val/Val (HR=0.44, 95% CI=0.18-0.98), ERCC1 C/C (HR=0.20, 95% CI=0.10-0.79) and ERCC2 G/G (HR=0.48, 95% CI=0.19-0.97) to be significantly associated with better survival of colorectal cancer. GSTP1 Val/Val, ERCC1 C/C and ERCC2 G/G were also related to longer survival among patients with colon cancer, with HRs (95% CIs) of 0.41 (0.16-0.91), 0.16 (0.09-0.74) and 0.34 (0.16-0.91), respectively. Conclusion: GSTP1, GSTP1, ERCC1 Asn118Asn and ERCC2 Lys751Gln genotyping might facilitate tailored oxaliplatin-based chemotherapy for colorectal cancer patients.

Studies on the Nuclease (Part 1) Phosphodiesterase and Phosphomonoesterase Producing by Streptomyces sp. (핵산분해효소에 관한 연구 (제1보) Streptomyces속 균주가 생산하는 Phosphomono, diesterase)

  • 이정치;장효일;김혁일;양한길
    • Microbiology and Biotechnology Letters
    • /
    • v.6 no.3
    • /
    • pp.121-127
    • /
    • 1978
  • This paper deals with investigation on the various effects of phosphodiesterase production of Streptomyces sp. and several properties of the enzyme. The results were as follows. 1) As a carbon source, sucrose was most effective PDase production when it was added. to the basal medium at 3% concentration. 2) These enzymes were remarkably activated by $Ca^{2+}$, Co$^{2+}$ and Mn$^{2+}$ but inhibited by Cu$^{2+}$. It was observed that concentration of metal ions, 0.1% of $Ca^{2+}$, 0.01% of Co$^{2+}$ and 0.04% of Mn$^{2+}$ were effective on the production of phosphodiesterase and phosphomonoesterase. 3) In case of the effect of aeration volume, 25 ml was very effective, that is, the more sufficient aeration, the better enzyme activity. Enzyme activity was to be found effective at 3% of inoculation volume, and comparatively more effective at 2%, 4% of inoculation volume. 4) Initial pH was 8. The enzyme activity reached to the maximum at 48 hours of cultivation time. 5) The optimum pH of phosphodiesterase was about 8 and that of phosphomonoesterase was about 9. The optimum temperature of phosphodiesterase and phosphomonoesterase was 6$0^{\circ}C$ and 5$0^{\circ}C$ respectively. respectively.

  • PDF

Nucleic Acid Degrading Enzymes of Barley Malt (맥아의 핵산분해효소)

  • Lee, Won-Jong
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.1-8
    • /
    • 1989
  • Ten cultivars of malting barley grown at four locations were malted and assayed for six enzymes involved in the degradation of nucleic acids. Among these enzymes were deoxyrinonuclease, ribonuclease, phosphodiesterase, 3'- and 5'- nucleotidases and phosphomonesterase. Activities of all enzymes in five-day malts were significantly affected by variety and location of growth. The average levels of ribonuclease, deoxyribonuclease, 3'-nucleotidase and 5'-nucleotidase of 80 five-day malts were 11.2, 5.7, 5.6 and 1.2 units per gram of malt, respectively. Six-rowed barley malts contained higher levels of deoxyribonuclease, phosphodiesterase and 3'-nucleotidase than those of two-rowed barley malts, while two-rowed barley malts contained significantly higher ribonuclease levels than those of six-rowed barley malts.

  • PDF

Partial Purification and Characterization of Enzymes Involved in the Processing of Pre-M1 RNA at the 3' End in Escherichia coli (대장균에서 선구-M1 RNA의 3'-말단 가공에 관여하는 효소들의 부분 정제와 그 특성 조사)

  • Kim, Ha Dong;Ko, Jae Hyeong;Cho, Bong Rae;Lee, Young Hoon;Park, In Won
    • Journal of the Korean Chemical Society
    • /
    • v.43 no.3
    • /
    • pp.307-314
    • /
    • 1999
  • Ml RNA, the RNA component of RNase P from Escherichia coli, is produced by 3' processing of pre-Ml RNA, a major primary transcript of the rnpB gene. The enzyme fraction containing the processing activity was partially purified and characterized. Since exposure of the active fraction to the high salt condition results in the inactivation of the processing activity, the processing enzyme seems to be an enzyme complex composed of multiple enzymes. The enzyme fraction loses the processing activity when treated with the chemical nuclease lead(II) ion, but regains its activity by the addition of RNA isolated from the enzyme fraction itself, suggesting that an RNA molecule(s) may be essential for the processing activity. Analysis of cleavage sites produced by the partially purified enzyme fraction also implies that the 3' processing occurs by multiple enzymes and at least in two distinct pathways.

  • PDF

Purification and Characterization of stu I Endomuclease from Streptomyces Tubercidicus (Streptomyces tubercidicus에 존재하는 stu I endonuclease의 정제와 특징)

  • 김기태;정미영;유욱준
    • Korean Journal of Microbiology
    • /
    • v.25 no.3
    • /
    • pp.180-183
    • /
    • 1987
  • Stu I, type II restriction endonuclease, has been purified to homogeneity from Streptomyces tubercidicus (ATCC 25502), and its catalytic properties have been studied. For the purification of Stu I endonuclease free of nonspecific nucleases, DEAE-Sephadex (A-50), QAE-Sephadex (A-50) and Heparin-agarose column chromatography have been performed after ammonium sulfate fractionation of the crude extract. The enzyme was further purified by gel filtration using Sephadex G-100 column to obtain homogeneous form of protein. The single polypeptide species of Stu I endonuclease has a subunit molecular weight of 34,000 $\pm$ 1,000 daltons as judged by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Stu I endonuclease requires $Mg^{2+}$ ion for its activity and is maximally active at neutral pH (7.0-8.0) in the absence of NaCl.

  • PDF

Analysis of the Dual Promoters and the $H_2O$$_2$-responsive Element of the cats Gene Encoding Catalase A in Streptomyces coelicolor

  • Cho, You-Hee;Hahn, Ji-Sook;Roe, Jung-Hye
    • Journal of Microbiology
    • /
    • v.38 no.4
    • /
    • pp.239-244
    • /
    • 2000
  • The cats gene encodes the major catalase in Sreptomyces coelicolor, whose production increases upon H$_2$O$_2$treatment. Besides the previously identified primary promoter (catApl), a minor promoter (catAp2) was newly assigned by S1 nuclease mapping. The catAp2 transcript was observed transiently upon entry into the stationary phase in liquid culture and upon differentiation on solid plates, whereas the level of catApl transcription did not chance significantly during this growth transition. ThecatApl promoter was transcribed by the major vegetative RNA polymerase holoenzyme containing $\sigma$$\^$HrdB/, whereas the catAp2 was transcribed in vitro by the holoenzyme containing $\sigma$$\^$R/ that is activated under oxidative conditions. The cia-element regulating the H$_2$O$_2$-inducibility of catApl was identified within the 23 bp inverted repeat sequence located between -65 and -43 of the catApl promoter. We roamed this sequence HRE (H$_2$O$_2$-responsive Element). The distal half of the inverted repeat was more crucial for H$_2$O$_2$-dependent induction of the catApl transcript than the proximal half. HRE most likely serves as a binding site for the H$_2$O$_2$-responsive repressor CatR.

  • PDF

Studies on nucleic acid and protein biosyntheses of Chlorella cells during the course of the chloroplast development (클로렐라의 엽록체 발생과정에 있어서의 핵산 및 단백질의 생합성에 관한 연구)

  • 이영녹;이종삼
    • Korean Journal of Microbiology
    • /
    • v.8 no.1
    • /
    • pp.1-12
    • /
    • 1970
  • Nucleic acid and protein biosynthese of the glucose-bleached Chlorella cells in relation to the process of the chloroplast reformation were traced, by measuring the changes in the amounts of cell constituents and nuclease activities of the cells during the greening process. The contents of RNA and protein of the glucose-bleached cells decreased significantly, shile the contents of nucleotides and amino acids of the cells increased to compared with those of the control, showing that the biosynthetic activities of RNA and protein of the cells were inhibited severely in the glucose-bleaching process. In the early greening process of the glucose-bleached Chlorella cells the contents of RNA and protein of the cells increased significantly, while the contents of nucleotides nad amino acids of the cells increased to compared with those of the control, showing that the biosynthetic activities of RNA and protein of the cells were inhibited severely in the glucose-bleaching process. In the early greening process of the glucose-bleached Chlorella cells the contents of RNA and protein of the cells increased significantly wihout any increase in the chlorophyll contents showing that the massive biosynthese of RNA and protein proceed prior to the chlorophyll bioynthesis in the cells. The phosphate contents in the DNA fraction of the glucose-bleached cells decreased, but the contents of acid-insoluble polyphosphate increased to compared with those of the control in the early greening porcess, exhibiting that the incorporation of the phosphorus from acid-insoluble polyphosphate into DNA was retarded. In the greening process of the glucose-bleached cells the ribonuclease nad deoxyribonuclease activities of the cells decreased to compared with those of the control, although the initial activities of the both enzymes in the cell were far great compared with the control. Although the initial phosphate contents in the lipid fraction of the glucose-bleached Chlorella cells were more great than the control, the phosphate contents in the lipid fraction of the cells decreased in the early greening process to compared with control, and then increased in the late developmental stages in which massive chlorophyll biosynthesis occured.

  • PDF

BK Knockout by TALEN-Mediated Gene Targeting in Osteoblasts: KCNMA1 Determines the Proliferation and Differentiation of Osteoblasts

  • Hei, Hongya;Gao, Jianjun;Dong, Jibin;Tao, Jie;Tian, Lulu;Pan, Wanma;Wang, Hongyu;Zhang, Xuemei
    • Molecules and Cells
    • /
    • v.39 no.7
    • /
    • pp.530-535
    • /
    • 2016
  • Large conductance calcium-activated potassium (BK) channels participate in many important physiological functions in excitable tissues such as neurons, cardiac and smooth muscles, whereas the knowledge of BK channels in bone tissues and osteoblasts remains elusive. To investigate the role of BK channels in osteoblasts, we used transcription activator-like effector nuclease (TALEN) to establish a BK knockout cell line on rat ROS17/2.8 osteoblast, and detected the proliferation and mineralization of the BK-knockout cells. Our study found that the BKknockout cells significantly decreased the ability of proliferation and mineralization as osteoblasts, compared to the wild type cells. The overall expression of osteoblast differentiation marker genes in the BK-knockout cells was significantly lower than that in wild type osteoblast cells. The BK-knockout osteoblast cell line in our study displays a phenotype decrease in osteoblast function which can mimic the pathological state of osteoblast and thus provide a working cell line as a tool for study of osteoblast function and bone related diseases.