• 제목/요약/키워드: Nuclear material diversion

검색결과 8건 처리시간 0.04초

APPLICATION OF FUZZY SET THEORY IN SAFEGUARDS

  • Fattah, A.;Nishiwaki, Y.
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
    • /
    • pp.1051-1054
    • /
    • 1993
  • The International Atomic Energy Agency's Statute in Article III.A.5 allows it“to establish and administer safeguards designed to ensure that special fissionable and other materials, services, equipment, facilities and information made available by the Agency or at its request or under its supervision or control are not used in such a way as to further any military purpose; and to apply safeguards, at the request of the parties, to any bilateral or multilateral arrangement, or at the request of a State, to any of that State's activities in the field of atomic energy”. Safeguards are essentially a technical means of verifying the fulfilment of political obligations undertaken by States and given a legal force in international agreements relating to the peaceful uses of nuclear energy. The main political objectives are: to assure the international community that States are complying with their non-proliferation and other peaceful undertakings; and to deter (a) the diversion of afeguarded nuclear materials to the production of nuclear explosives or for military purposes and (b) the misuse of safeguarded facilities with the aim of producing unsafeguarded nuclear material. It is clear that no international safeguards system can physically prevent diversion. The IAEA safeguards system is basically a verification measure designed to provide assurance in those cases in which diversion has not occurred. Verification is accomplished by two basic means: material accountancy and containment and surveillance measures. Nuclear material accountancy is the fundamental IAEA safeguards mechanism, while containment and surveillance serve as important complementary measures. Material accountancy refers to a collection of measurements and other determinations which enable the State and the Agency to maintain a current picture of the location and movement of nuclear material into and out of material balance areas, i. e. areas where all material entering or leaving is measurab e. A containment measure is one that is designed by taking advantage of structural characteristics, such as containers, tanks or pipes, etc. To establish the physical integrity of an area or item by preventing the undetected movement of nuclear material or equipment. Such measures involve the application of tamper-indicating or surveillance devices. Surveillance refers to both human and instrumental observation aimed at indicating the movement of nuclear material. The verification process consists of three over-lapping elements: (a) Provision by the State of information such as - design information describing nuclear installations; - accounting reports listing nuclear material inventories, receipts and shipments; - documents amplifying and clarifying reports, as applicable; - notification of international transfers of nuclear material. (b) Collection by the IAEA of information through inspection activities such as - verification of design information - examination of records and repo ts - measurement of nuclear material - examination of containment and surveillance measures - follow-up activities in case of unusual findings. (c) Evaluation of the information provided by the State and of that collected by inspectors to determine the completeness, accuracy and validity of the information provided by the State and to resolve any anomalies and discrepancies. To design an effective verification system, one must identify possible ways and means by which nuclear material could be diverted from peaceful uses, including means to conceal such diversions. These theoretical ways and means, which have become known as diversion strategies, are used as one of the basic inputs for the development of safeguards procedures, equipment and instrumentation. For analysis of implementation strategy purposes, it is assumed that non-compliance cannot be excluded a priori and that consequently there is a low but non-zero probability that a diversion could be attempted in all safeguards ituations. An important element of diversion strategies is the identification of various possible diversion paths; the amount, type and location of nuclear material involved, the physical route and conversion of the material that may take place, rate of removal and concealment methods, as appropriate. With regard to the physical route and conversion of nuclear material the following main categories may be considered: - unreported removal of nuclear material from an installation or during transit - unreported introduction of nuclear material into an installation - unreported transfer of nuclear material from one material balance area to another - unreported production of nuclear material, e. g. enrichment of uranium or production of plutonium - undeclared uses of the material within the installation. With respect to the amount of nuclear material that might be diverted in a given time (the diversion rate), the continuum between the following two limiting cases is cons dered: - one significant quantity or more in a short time, often known as abrupt diversion; and - one significant quantity or more per year, for example, by accumulation of smaller amounts each time to add up to a significant quantity over a period of one year, often called protracted diversion. Concealment methods may include: - restriction of access of inspectors - falsification of records, reports and other material balance areas - replacement of nuclear material, e. g. use of dummy objects - falsification of measurements or of their evaluation - interference with IAEA installed equipment.As a result of diversion and its concealment or other actions, anomalies will occur. All reasonable diversion routes, scenarios/strategies and concealment methods have to be taken into account in designing safeguards implementation strategies so as to provide sufficient opportunities for the IAEA to observe such anomalies. The safeguards approach for each facility will make a different use of these procedures, equipment and instrumentation according to the various diversion strategies which could be applicable to that facility and according to the detection and inspection goals which are applied. Postulated pathways sets of scenarios comprise those elements of diversion strategies which might be carried out at a facility or across a State's fuel cycle with declared or undeclared activities. All such factors, however, contain a degree of fuzziness that need a human judgment to make the ultimate conclusion that all material is being used for peaceful purposes. Safeguards has been traditionally based on verification of declared material and facilities using material accountancy as a fundamental measure. The strength of material accountancy is based on the fact that it allows to detect any diversion independent of the diversion route taken. Material accountancy detects a diversion after it actually happened and thus is powerless to physically prevent it and can only deter by the risk of early detection any contemplation by State authorities to carry out a diversion. Recently the IAEA has been faced with new challenges. To deal with these, various measures are being reconsidered to strengthen the safeguards system such as enhanced assessment of the completeness of the State's initial declaration of nuclear material and installations under its jurisdiction enhanced monitoring and analysis of open information and analysis of open information that may indicate inconsistencies with the State's safeguards obligations. Precise information vital for such enhanced assessments and analyses is normally not available or, if available, difficult and expensive collection of information would be necessary. Above all, realistic appraisal of truth needs sound human judgment.

  • PDF

Evaluation of nuclear material accountability by the probability of detection for loss of Pu (LOPu) scenarios in pyroprocessing

  • Woo, Seung Min;Chirayath, Sunil S.
    • Nuclear Engineering and Technology
    • /
    • 제51권1호
    • /
    • pp.198-206
    • /
    • 2019
  • A new methodology to analyze the nuclear material accountability for pyroprocessing system is developed. The $Pu-to-^{244}Cm$ ratio quantification is one of the methods for Pu accountancy in pyroprocessing. However, an uncertainty in the $Pu-to-^{244}Cm$ ratio due to the non-uniform composition in used fuel assemblies can affect the accountancy of Pu. A random variable, LOPu, is developed to analyze the probability of detection for Pu diversion of hypothetical scenarios at a pyroprocessing facility considering the uncertainty in $Pu-to-^{244}Cm$ ratio estimation. The analysis is carried out by the hypothesis testing and the event tree method. The probability of detection for diversion of 8 kg Pu is found to be less than 95% if a large size granule consisting of small size particles gets sampled for measurements. To increase the probability of detection more than 95%, first, a new Material Balance Area (MBA) structure consisting of more number of Key Measurement Points (KMPs) is designed. This multiple KMP-measurement for the MBA shows the probability of detection for 8 kg Pu diversion is greater than 96%. Increasing the granule sample number from one to ten also shows the probability of detection is greater than 95% in the most ranges for granule and powder sizes.

북한의 핵개발과 남북 상호사찰 방안 (A Study on the Nuclear Development of North Korea and South-North Mutual Nuclear Inspection)

  • 박승기
    • 한국국방경영분석학회지
    • /
    • 제18권1호
    • /
    • pp.1-14
    • /
    • 1992
  • As North Korea signed 'the Korea Peninsula Non-Nuclearization Joint Declaration' at the end of last year as well as full-scope safeguards agreement with the IAEA in Jan.30 1992, her nuclear activity was incorporated into the international monitoring system and opportunities were arranged to .obstruct her nuclear weapon development and nuclear material diversion, which have been international issues up to recent years. However, achieving goals of the Joint Declaration and safeguards agreement should presuppose North Korea's sincerity toward the abandonment of nuclear weapon development. In this study, first of all, her nuclear policy, current situation of nuclear development and the capability of nuclear development are analyzed. Also, based on the analysis. attempts have been made to find methods of effective performance of the South-North Korea mutual nuclear inspection and the suggested methods are as follows; 1) Analysis of the limits of IAEA inspection and suggestion of its supplementary strategies 2) Securing and training professional inspectors for the South-North mutual inspection 3) Establishment of the verification technology to detect nuclear material diversion.

  • PDF

Current Issues for the Material Balance Evaluation in NFFP

  • Na, Won-Woo;Park, Wan-Sou;Ahn, Seung-Ho
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 2004년도 추계학술발표회 발표논문집
    • /
    • pp.1447-1448
    • /
    • 2004
  • As the plants are classified as a bulk facility by the Agency's safeguards criteria, the Material Balance Evaluation is a good tool to timely detect diversion that will be accomplished through the creation of defects as small as bias defects. Through all evaluations made by the Agency, it Is strongly recommended to report SRD based on both weight and enrichment, maintain the reliable MUF declaration and improve the gamma spectrometry measurement procedure. These recommendations have been now applied and are going on.

  • PDF

Examination of Proliferation Resistance Assessment for Nuclear Fuel Cycles

  • Lee, Yoon-Hee;Lee, Kun-Jai
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2009년도 학술논문요약집
    • /
    • pp.73-73
    • /
    • 2009
  • There are many factors to evaluate nuclear fuel cycle such as safety, public acceptance, economics, etc.. Transparency, proliferation, environment issues, public acceptance and safety are essential to expansion of nuclear industry and proliferation resistance is one of key constraints in the deployment of advanced nuclear energy systems. Proliferation resistance is being considered as one of the most important factors in assessing advanced and innovative nuclear systems. IAEA defmes proliferation resistance as characteristics of nuclear energy system that impedes the diversion or undeclared production of nuclear material [1]. Barriers to proliferation is consist of intrinsic and extrinsic barriers(institutional measures). Intrinsic barriers are characterized in material barriers and technical barriers in general. Material barriers is intrinsic, or inherent, qualities of materials that reduce the inherent desirability or attractiveness of the material as an explosive. Isotopic, chemical, radiological, mass and bulk, detectability barriers are considered as material barriers attributes [2]. Proliferation resistance is examined for several nuclear fuel cycles based on previous study which is focused on the intrinsic barriers [3-4]. Pyroprocessing and DUPIC are considered as reprocessing technologies in Korea and the PWR direct disposal is considered. Comparative assessments of the proliferation attributes and merits of different fuel cycle systems will be performed and the optimal back-end fuel cycle and strategy will be proposed.

  • PDF

Ability of non-destructive assay techniques to identify sophisticated material partial defects

  • Lloyd, Cody;Goddard, Braden
    • Nuclear Engineering and Technology
    • /
    • 제52권6호
    • /
    • pp.1252-1258
    • /
    • 2020
  • This study explores the ability of non-destructive assay techniques to detect a partial material defect in which 100 g of plutonium are diverted from the center of a 1000 g can of PuO2 powder. Four safeguards measurements techniques: neutron multiplicity counting, calorimetry, gravimetry, and gamma ray spectroscopy are used in an attempt to detect the defect. Several materials are added to the partial defect PuO2 can to replicate signatures of the diverted material. 252Cf is used to compensate for the doubles neutron counts, 241Am is used to compensate for the decay heat, and aluminum is used to compensate for the weight. Although, the doubles and triples difference before and after diversion are statistically indistinguishable with the AWCC in fast and thermal mode, the difference in the singles counts are statistically detectable in both modes. The relatively short half-life of 252Cf leads to a decrease (three sigma uncertainty) in the doubles neutron counts after 161 days. Combining this with the precise quantity of 241Am needed (10.7 g) to mimic the heat signature and the extreme precision in 252Cf mass needed to defeat neutron multiplicity measurements gives reassurance in the International Atomic Energy Agency's ability to detect partial material defects.

대북 바이오가스플랜트 지원의 제재 가능성에 대한 기술적 평가 (A Technical Assessment of Possibility Sanction for Assistance to DPRK)

  • 정용진;권용재
    • 에너지공학
    • /
    • 제24권4호
    • /
    • pp.192-199
    • /
    • 2015
  • 북한은 "자력갱생"의 경제기조 아래, 에너지 수급원을 수력과 화력에 집중해왔으나, 구 공산권의 몰락에 따른 관련 기자재 공급 불안정, 홍수 등 각종재해에 따른 설비 노후화 등에 기인한 극심한 에너지난을 겪으며, 에너지원의 다양화에 대한 관심이 대내외적으로 증대되고 있다. 특히, 신재생에너지는 북한 송전망 상황에 부합하는 분산형 에너지원이라는 점과, 자력갱생 기조에 부합하는 자체 생산 가능한 에너지라는 점에서 대북 에너지지원의 최선책으로 회자되고 있으며, 바이오가스는 식량증산과 연계하여 북한 주민의 인권 향상에 기여할 수 있어, 인도적 지원측면에서 FAO, WFP 등 국제기구를 통한 지원이 원활할 것으로 예상되는 바, 신재생에너지원 중에서도 지원가능성이 가장 높은 에너지원으로 손꼽히고 있다. 그러나 한편으로는 지원 물품의 군사적 용도로의 전용가능성과 전략물자의 유입에 대한 우려 또한 높은 실정이며, 북한의 핵실험 및 미사일 발사 등 군사적 도발에 따른 UN 안전보장이사회결의와 국제사회의 경제제재가 대북 지원의 걸림돌이 되고 있다. 본 논문에서는 바이오가스플랜트의 대북지원 가능 물품에 대하여 UN 제재품목여부를 기반으로 제재가능성을 평가하고, 원활한 대북지원을 위한 해결책을 논하고자 한다.