• 제목/요약/키워드: Nuclear factor-kappa

검색결과 1,014건 처리시간 0.024초

TNF-$\alpha$ 자극에 의한 U937 단핵구 세포의 HT29 대장 상피 세포 부착에 대한 Berberine의 PPAR$\gamma$가 아닌 NF-$\kappa$B 경로를 통한 억제 효과 (Inhibitory Effect of Berberine on TNF-$\alpha$-induced U937 Monocytic Cell Adhesion to HT29 Human Colon Epithelial Cells is Mediated through NF-$\kappa$B Rather than PPAR$\gamma$)

  • 박수영;이광익;김일엽;김정애
    • 약학회지
    • /
    • 제54권2호
    • /
    • pp.91-96
    • /
    • 2010
  • Berberine, an isoquinoline alkaloid, has a wide range of pharmacological effects, including anti-inflammation. It has been reported that berberine inhibits experimental colitis through inhibition of IL-8, and that inhibitory effect of berberine on inflammatory cytokine expression is mediated through peroxisome proliferator activated receptor (PPAR)-$\gamma$. In this study, we examined the effects and action mechanism of berberine on the tumor necrosis factor (TNF)-$\alpha$-induced monocyte adhesion to HT29 human colonic epithelial cells, which is commonly used as an in vitro model of inflammatory bowel disease (IBD). Berberine significantly inhibited the TNF-$\alpha$-induced monocyte adhesion to HT29, which is similar to the effect of PDTC, a nuclear factor (NF)-$\kappa$B inhibitor. However, ciglitazone and GW, the ligands of PPAR-$\gamma$, did not suppress the TNF-$\alpha$-induced monocyte adhesion to HT29 cells. In addition, TNF-$\alpha$-induced chemokine expression and NF-$\kappa$B transcriptional activity were significantly inhibited by berberine in a concentration-dependent manner. The results suggest that inhibitory effect of berberine on colitis is mediated through suppression of NF-$\kappa$B and NF-$\kappa$B-dependent chemokine expression.

오라노핀에 의한 nuclear factor κB 활성저해는 Nrf2 활성화와 무관한 기전에 의함 (Auranofin Downregulates Nuclear Factor-κB Activation via Nrf2-Independent Mechanism)

  • 김남훈;박효정;김인숙
    • 생명과학회지
    • /
    • 제20권12호
    • /
    • pp.1772-1776
    • /
    • 2010
  • 내재면역반응의 중요한 조절자인 Nrf2와 NF-${\kappa}B$는 염증시에 교차 작용을 통하여 서로의 전사활성을 조절할 수 있다고 보고된 바 있으나 상반된 결과도 제시되고 있어서 아직까지 확실하게 규명되어 있지 않다. 저자들은 선행연구에서 NF-${\kappa}B$ 저해제인 금(I)-화합물 오라노핀이 인간 관절활막세포와 단핵구성 세포에서 Nrf2를 활성화시킴을 확인한 바 있기 때문에, 본 연구에서는 Nrf2를 knockdown 시킨 류마티스성 활막세포를 사용하여 오라노핀에 의해 저해되는 NF-${\kappa}B$ 신호전달 과정에 Nrf2가 관여하는지를 조사하였다. 세포를 Nrf2 siRNA로 transfection시켰을 때 Nrf2 발현은 대부분 차단됨을 확인하였다. 하지만 Nrf2 knockdown은 TNF-$\alpha$에 의해 유도되는 $I{\kappa}B-{\alpha}$ 분해를 막는 오라노핀의 작용에는 영향을 주지 않았다. Nrf2 target 단백질로서 항염 작용에 관여하는 HO-1을 knockdown 시켰을 경우에도 $I{\kappa}B-{\alpha}$ 분해를 저해하는 오라노핀의 작용에 영향을 미치지 않았다. 또한, Nrf2 knockdown은 오라노핀에 의해 저해된 ICAM-1 발현을 다시 복원시키지 못했다. 이러한 결과들은 염증성 싸이토킨에 의해 유도되는 NF-${\kappa}B$ 활성화를 오라노핀이 저해하는 기전에 Nrf2 및 HO-1이 관련되어 있지 않음을 시사한다. 따라서 류마티스성 관절활막세포에서 오라노핀의 항염작용 기전으로 알려진 Nrf2/HO-1 활성유도와 NF-${\kappa}B$ 활성저해는 교차작용 없이 각각 독립적인 기전을 통해 나타나는 것으로 생각된다.

Intra-Spinal Bone Marrow Mononuclear Cells Transplantation Inhibits the Expression of Nuclear Factor-${\kappa}B$ in Acute Transection Spinal Cord Injury in Rats

  • Shrestha, Rajiv Prasad;Qiao, Jian Min;Shen, Fu Guo;Bista, Krishna Bahadur;Zhao, Zhong Nan;Yang, Jianhua
    • Journal of Korean Neurosurgical Society
    • /
    • 제56권5호
    • /
    • pp.375-382
    • /
    • 2014
  • Objective : To assess the effect of bone marrow mononuclear cells (BMMNCs) transplantation in the expression of nuclear factor-${\kappa}B$ (NF-${\kappa}B$) in spinal cord injury (SCI) in rats. Methods : BMMNCs were isolated from tibia and femur by a density gradient centrifugation. After establishment of acute transection SCI, rats were divided into experiment (BMMNCs), experiment control (0.1 M PBS infused) and sham surgery groups (laminectomy without any SCI). Locomotor function was assessed weekly for 5 weeks post-injury using BBB locomotor score and urinary bladder function daily for 4 weeks post-injury. Activity of NF-${\kappa}B$ in spinal cord was assessed by immunohistochemistry and reverse transcriptase polymerase chain reaction. Results : At each time point post-injury, sham surgery group had significantly higher Basso, Beattie, Bresnahan locomotor and urinary bladder function scores than experiment and experiment control group (p<0.05). At subsequent time interval there were gradual improvement in both experiment and experiment control group, but experiment group had higher score in comparison to experiment control group (p<0.05). Comparisons were also made for expression of activated NF-${\kappa}B$ positive cells and level of NF-${\kappa}B$ messenger RNA in spinal cord at various time points between the groups. Activated NF-${\kappa}B$ immunoreactivity and level of NF-${\kappa}B$ mRNA expression were significantly higher in control group in comparison to experiment and sham surgery group (p<0.05). Conclusion : BMMNCs transplantation attenuates the expression of NF-${\kappa}B$ in injured spinal cord tissue and thus helps in recovery of neurological function in rat models with SCI.

lipopolysaccharide로 자극된 대식세포에서 금앵자의 Nitric Oxide 생성 및 $NF-{\kappa}B$ 활성 억제 효과 (Inhibitory Effect of Rosa laevigata on Nitric Oxide Synthesis and $NF-{\kappa}B$ Activity in lipopolysaccharide-stimulated Macrophages)

  • 하현희;박순영;고우신;장정수;김영희
    • 동의생리병리학회지
    • /
    • 제22권2호
    • /
    • pp.385-389
    • /
    • 2008
  • Nitric oxide (NO) has been suggested to play an important role in endotoxin-mediated shock and inflammation. In this study, we investigated the effect of Rosa laevigata Michx. (Rosaceae) on the production of NO and the molecular mechanism of its action. Rosa laevigata inhibited NO generation and iNOS expression in LPS-stimulated murine macrophages. Activity of nuclear $factor{-\kappa}B\;(NF{-\kappa}B)$ and the degradation of $I{\kappa}B-{\alpha}$ were suppressed by Rosa laevigata. Furthermore, extracellular signal-stimulated kinase (ERK), which is known to be involved in $NF{-\kappa}B$ activation, is inhibited by Rosa laevigata. These results suggest that Rosa laevigata could exert its anti-inflammatory actions by suppressing the synthesis of NO through inhibition of $NF{-\kappa}B$ activity.

Platelet-Activating Factor Enhances Experimental Pulmonary Metastasis of Murine Sarcoma Cells by Up-regulation of Matrix Metalloproteinases-9 Through NF-$\kappa$B-Dependent Pathway

  • Ko, Hyun-Mi;Back, Hae-Kyong
    • 대한의생명과학회지
    • /
    • 제10권2호
    • /
    • pp.143-151
    • /
    • 2004
  • Matrix metalloproteinases (MMPs) are capable of degrading extracellular matrix, a process that is necessary for angiogenesis, tumor invasion and metastasis. Platelet-activating factor (PAP) increases angiogenesis, tumor growth and metastasis through nuclear factor (NF)-$\kappa$B activation. Based on these facts, the involvement of MMPs in PAF-induced pulmonary metastasis was investigated in murine sarcoma cells, MMSV-BALB/3T3. Messenger RNA expression and enzymatic activity of MMP-9 were assessed by RT-PCR and zymography, and cell migration and metastasis were done for the detection of MMP-9 functional activity. PAP induced mRNA expression and enzymatic activity of MMP-9, and its effects were either inhibited by the PAP antagonist, WEB 2170 or by the NF-$\kappa$B inhibitor, parthenolide, or p65 antisense oligonucleotide in a dose-dependent manner. In addition, PAF induced promoter activity of MMP-9, which was inhibited by WEB 2170, phenanthroline, NAC, PDTC. These results indicate that PAF induces mRNA expression and enzymatic activity of MMP-9 in NF-$\kappa$B dependent manner. Cell migration assay showed that PAF induced MMSV-BALB/3T3 migration, and its effect was significantly inhibited by treatment with phenanthroline. PAF enhanced pulmonary metastasis of murine sarcoma cells, MMSV-BALB/3T3 was also reduced by phenanthroline. These results suggest that PAF-enhanced cell migration and pulmonary metastasis is mediated through the expression of MMP. In conclusion, It is suggested that PAF enhances pulmonary metastasis by inducing MMP-9 expression via the activation of NF-$\kappa$B.

  • PDF

Aqueous extract of Lycii fructus suppresses inflammation through the inhibition of nuclear factor kappa B signal pathway in murine raw 264.7 macrophages

  • Kim, Beum-Seuk;Lim, Hyung-Ho;Song, Yun-Kyung;Sung, Yun-Hee;Kim, Sung-Eun;Chang, Hyun-Kyung;Shin, Mal-Soon;Kim, Chang-Ju;Lee, Hye-Jung;Kim, Dong-Hee
    • Advances in Traditional Medicine
    • /
    • 제10권3호
    • /
    • pp.155-164
    • /
    • 2010
  • Lycii fructus is the fruit of Lycium chinense Miller and is part of the Solanaceae family. Lycii fructus produces various effects such as hypotensive, hypoglycemic, anti-pyretic, and anti-stress activities. Lycii fructus is known to contain betaine, carotene, nicotinic acid, zeaxanthin, and cerebroside. In the present study, the effects of Lycii fructus aqueous extract on lipopolysaccharide (LPS)-induced inflammation in murine raw 264.7 macrophage cells were investigated. In this study we utilized the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, reverse transcriptionpolymerase chain reaction (RT-PCR), Western blotting, and nitric oxide (NO) detection. Lycii fructus aqueous extract suppressed NO production by inhibiting the LPS-induced expressions of inducible nitric oxide synthase (iNOS) and tumor necrosis factor-alpha (TNF-$\alpha$) mRNA and iNOS protein in murine raw 264.7 macrophage cells. Also, Lycii fructus aqueous extract suppressed the activation of nuclear factor-kappa B (NF-${\kappa}B$) in the nucleus. These results demonstrated that Lycii fructus aqueous extract causes an anti-inflammatory effect that was likely produced by the suppression of iNOS expression through the down-regulation of NF-$\hat{e}B$ binding activity.

Short Heterodimer Partner as a Regulator in OxLDL-induced Signaling Pathway

  • Kimpak, Young-Mi
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2001년도 Proceedings of International Convention of the Pharmaceutical Society of Korea
    • /
    • pp.109-113
    • /
    • 2001
  • Oxidized low-density lipoprotein (oxLDL) has been shown to modulate transactivations by the peroxisome proliferator activated receptor (PPAR)$\gamma$ and nuclear factor-kappa B (NF$\kappa$B). In this study, the oxLDL signaling pathways involved with the NF$\kappa$B transactivation were investigated by utilizing a reporter construct driven by three upstream NF$\kappa$B binding sites, and various pharmacological inhibitors. OxLDL and its constituent lysophophatidylcholine (lysoPC) induced a rapid and transient increase of intracellular calcium and stimulated the NF-KB transactivation in resting RAW264.7 macrophage cells in an oxidation-dependent manner. The NF$\kappa$B activation by oxLDL or lysoPC was inhibited by protein kinase C inhibitors or an intracellular calcium chelator. Tyrosine kinase or PI3 kinase inhibitors did not block the NF$\kappa$B transactivation. Furthermore, the oxLDL-induced NF$\kappa$B activity was abolished by the PPAR$\gamma$ ligands. When the endocytosis of oxLDL was blocked by cytochalasin B, the NF$\kappa$B transactivation by oxLDL was synergistically increased, while PPAR transactivation was blocked. These results suggest that oxLDL activates NF-$\kappa$B in resting macrophages via protein kinase C- and/or calcium-dependent pathways, which does not involve the endocytic processing of oxLDL. The endocytosis-dependent PPAR$\gamma$ activation by oxLDL may function as an inactivation route of the oxLDL induced NF$\kappa$B signal. Short heterodimer partner (SHP), specifically expressed in liver and a limited number of other tissues, is an unusual orphan nuclear receptor that lacks the conventional DNA-binding domain. In this work, we found that SHP expression is abundant in murine macrophage cell line RAW 264.7 but suppressed by oxLDL and its constituent I3-HODE, a ligand for peroxisome proliferator-activated receptor y. Furthermore, SHP acted as a transcription coactivator of nuclear factor-$\kappa$B (NF$\kappa$B) and was essential for the previously described NF$\kappa$B transactivation by lysoPC, one of the oxLDL constituents. Accordingly, NF$\kappa$B, transcriptionally active in the beginning, became progressively inert in oxLDL-treated RAW 264.7 cells, as oxLDL decreased the SHP expression. Thus, SHP appears to be an important modulatory component to regulate the transcriptional activities of NF$\kappa$B in oxLDL-treated, resting macrophage cells.

  • PDF

Humanin suppresses receptor activator of nuclear factor-κB ligand-induced osteoclast differentiation via AMP-activated protein kinase activation

  • Kang, Namju;Kim, Ki Woo;Shin, Dong Min
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제23권5호
    • /
    • pp.411-417
    • /
    • 2019
  • Humanin (HN) is a mitochondrial peptide that exhibits cytoprotective actions against various stresses and diseases. HN has been shown to induce the phosphorylation of AMP-activated protein kinase (AMPK), which is a negative regulator of receptor activator of nuclear factor-${\kappa}B$ ligand (RANKL). However, the role of HN in osteoclastogenesis or other skeletal disorders remains unknown. Here, we examined whether HN regulates osteoclastogenesis via AMPK activation using bone marrow-derived macrophage (BMM) cultures. Our results show that HN inhibited RANKL-induced osteoclast formation and reduced the expression of genes involved in osteoclastogenesis, including nuclear factor of activated T-cells cytoplasmic 1, osteoclastassociated receptor, cathepsin K, and tartrate-resistant acid phosphatase. Moreover, HN increased the levels of phosphorylated AMPK protein; compound C, an AMPK inhibitor, recovered HN-induced osteoclast differentiation. In addition, we found that HN significantly decreased the levels of RANKL-induced reactive oxygen species in BMMs. Therefore, these results indicate that HN plays an important role in osteoclastogenesis and may function as an inhibitor of bone disorders via AMPK activation.

Inhibitory Effects of β-Glycyrrhetinic Acid on Tumor Necrosis Factor-α Production in RAW 264.7 Cells

  • Park, Kyoung-Sik
    • Journal of Applied Biological Chemistry
    • /
    • 제53권3호
    • /
    • pp.147-153
    • /
    • 2010
  • $\beta$-glycyrrhetinic acid (GA), the active principle of licorice (Glycyrrhiza glabra L.) has been reported to exhibit anti-inflammatory properties in different animal models. In this study, the effects of GA on the production of inflammatory mediators including tumor necrosis factor (TNF)-$\alpha$, interleukin (IL)-6, nitric oxide (NO), and prostaglandin E (pGE)-2 were examined in RAW 264.7 cells in vitro. Furthermore, to elucidate a possible mechanism for the inhibitory effect of GA on the production of TNF-$\alpha$, it was investigated whether the treatment of GA affects the I-${\kappa}B{\alpha}$ degradation and subsequent nuclear translocation of NF-${\kappa}B$. Various inflammatory responses were induced in the culture system by treating with a lipopolysaccharide (LPS). GA showed anti-inflammatory activities in dose-dependant manner with $IC_{50}$ of $5.4{\mu}M$ by inhibiting the production of TNF-$\alpha$ in RAW 264.7 cells. In addition, the treatment of GA blocked both I-${\kappa}B{\alpha}$ degradation and the nuclear translocation of NF-${\kappa}B$ from cytosol to nucleus. However, it did not affect the production of IL-6, NO, and PGE-2, implying the direct blocking of the production of TNF-$\alpha$ resulting from both the I-${\kappa}B{\alpha}$ degradation and the nuclear translocation of NF-${\kappa}B$. This finding might provide the underlying mechanism to explain the reported anti-inflammatory activities of GA in animal models.

Inhibitory Effect of Benzofuran Compound on Cyclooxygenase

  • Min, Kyung-Rak;Ahn, Ki-Young;Chung, Eun-Yong;Lee, Yong-Rok;Kim, Yeong-Shik;Kim, Young-Soo
    • Natural Product Sciences
    • /
    • 제10권6호
    • /
    • pp.315-320
    • /
    • 2004
  • Alpha-viniferin was previously isolated as a cyclooxygenase (COX)-2 inhibitor from Carex humilis (Cyperaceae) and is an oligomeric stilbene compound with benzofuran (BF) moieties in its chemical structure. In the present study, a chemically synthetic BF compound, named as 3,3-dimethyl-2,3,4,6,7,8,9,10,11,12,13,14,15,16,17,18-hexadecahydro-1H-benzo[b] cyclopentadeca[d]furan-1-one, was discovered to inhibit bacterial lipo polysaccharide (LPS)-induced prostaglandin $E_2$ $(PGE_2)$ production in macrophages RAW 264.7. The BF compound exhibited a selectively preferred inhibitory effect on COX-2 activity over COX-1 activity. Furthermore, BF compound inhibited LPS-induced COX-2 expression at transcription level. As a down-regulatory mechanism of COX-2 expression shown by BF compound, suppression of nuclear factor $(NF)-{\kappa}B$ activation has been demonstrated. BF compound inhibited LPS-induced $NF-{\kappa}B$ transcriptional activity and nuclear translocation of $NF-{\kappa}B$ p65, in parallel, but did not affect LPS-induced degradation of inhibitory ${\kappa}B{\alpha}$ protein $(I{\kappa}B{\alpha})$. Taken together, anti-inflammatory effect of BF compound on $PGE_2$ production was ascribed by its down-regulatory action on LPS-induced COX-2 synthesis in addition to inhibitory action on enzyme activity of COX-2.