• 제목/요약/키워드: Nuclear factor of activated T cells

검색결과 104건 처리시간 0.031초

녹제초 추출물이 파골세포 분화 및 골 흡수에 미치는 영향 (Effects of Pyrola japonica Extracts on Osteoclast Differentiation and Bone Resorption)

  • 박정식;임형호
    • 한방재활의학과학회지
    • /
    • 제29권2호
    • /
    • pp.135-147
    • /
    • 2019
  • Objectives This study was performed to evaluate the effect of Pyrola japonica extract (NJ) and its principal constituent, homoarbutin (HA) on osteoclast differentiation and gene expression and bone resorption. The osteoclastogenesis and gene expression were determined in receptor activator of nuclear factor kappa B ligand (RANKL)-stimulated RAW264.7 cell. Methods In order to evaluate the effect of HA extracted from NJ on bone resorption, osteoclasts were used to be differentiated and formed by stimulating RAW264.7 cells with RANKL. Tartarate-resistant acid phosphatase (TRAP) (+) polynuclear osteoclast formation ability was evaluated, and differentiation control genes including cathepsin K, matrix metalloproteinases-9 (MMP-9), and TRAP in osteoclast differentiation were analyzed by real-time polymerase chain reaction (PCR). Immunoblotting was performed to measure the effect of mitogen-activated protein kinase (MAPK) factors on bone resorption, and the effect of osteoclasts on osteoclast differentiation was measured. Results Both NJ and high concentration of HA blocked RANKL-stimulated differentiation from RAW264.7 cell to TRAP-positive multinucleated cells. NJ reduced RANKL-induced expression of TRAP, cathepsin K. Both NJ and high concentration of HA inhibited RANKL-mediated expression of MMP-9, nuclear factor of activated T-cells, cytoplasmic 1, and cellular Jun-fos. NJ suppressed RANKL-stimulated expression of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase, tumor necrosis factor-alpha, and levels of interleukins. Both NJ and HA decreased bone resorption in osteoclast-induced bone pit formation model. Conclusions These results suggest that NJ and HA blocked bone resorption by decreasing RANKL-mediated osteoclastogenesis through down-regulation of genes for osteoclast differentiation.

RAW 264.7 세포에서 Lycopene의 MAPK/Nrf2/HO-1 신호 전달 체계를 통한 항산화 효과 (Anti-oxidative Activity of Lycopene Via the Induction of HO-1 Expression by MAPK/Nrf2 Signaling Pathway in RAW 264.7 Cells)

  • 박충무;안현;윤현서
    • 대한통합의학회지
    • /
    • 제12권1호
    • /
    • pp.1-10
    • /
    • 2024
  • Purpose: Lycopene is abundantly contained in Tomatoes and is known for diverse biological activities such as antioxidant, anti-inflammatory, and anticancer effects. In this study, the antioxidative potential of lycopene was investigated through the induction of hemeoxygenase (HO)-1 by nuclear factor-erythroid 2 p45-related factor2 (Nrf2) and upstream signaling molecules, mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)/Aktin RAW 264.7 cells. Methods: The antioxidative potential of lycopene against oxidative stress and its molecular mechanisms were determined by the cell viability assay, intracellular reactive oxygen species (ROS) formation assay, and Western blot analysis in RAW 264.7 cells. Results: Lycopene treatment significantly attenuated tert-butyl hydroperoxide (t-BHP) induced intracellular ROS formation in a dose-dependent manner without any cytotoxicity. In addition, 50 µM of lycopene for 6 h treatment induced potent HO-1 expression and its transcription factor, Nrf2. MAPK and PI3K/Aktwere also analyzed due to their critical roles in the regulation of cellular redox homeostasis against oxidative damage. As a result, phosphorylation of extracellular regulated kinase (ERK) was significantly induced by lycopene treatment while the activated status of c-Jun NH2-terminal kinase (JNK), p38, and Akt, were not given any effect. To confirm the antioxidative mechanism of HO-1 mediated by ERK activation, each selective inhibitor was employed in a protection assay, in which oxidative damage occurred by t-BHP. Lycopene, SnPP, and CoPP treatments reflected accelerated HO-1 expression could be a protective role against oxidative damage-initiated cell death. A selective inhibitor for ERK significantly inhibited the lycopene-induced cytoprotective effect but selective inhibitors for other signaling molecules did not attenuate the rate of t-BHP-induced cell death. Conclusion: In conclusion, lycopene potently scavenged intracellular ROS formation and enhanced the HO-1 mediated antioxidative potential through the modulation of Nrf2, MAPK signaling pathway in RAW 264.7 cells.

피부세포에서 아토피 피부염의 유발과 관련된 PAR-2 및 사이토카인의 발현을 감소시키는 한약재 탐색 (Screening of Herbal Extracts to Reduce PAR-2 and Cytokine Expression Related to Atopic Dermatitis in Keratocytes)

  • 박선민;이정복;김다솔
    • 동의생리병리학회지
    • /
    • 제25권2호
    • /
    • pp.270-274
    • /
    • 2011
  • The prevalence of atopic dermatitis has markedly increased in recent years but the mechanism has not been clearly revealed. Recent study exhibited that atopic dermatitis was exacerbated by the increase of proteinase-activated receptor (PAR)-2 expression, which activated $I{\kappa}B$ kinase --> nuclear factor kappa B. Therefore, we determined whether the allergens of dust mites induced the expression of PAR-2, intercellular adhesion molecule-1 (ICAM-1, adehision molecule), interleukins (IL)-6 in HaCaT keratocytes and which herbal 1,3-butylene glycol extracts (Mori Cortex Radicis, Sanguisorba officinalis L., Arctium lappa Linne, Torilis japonica DC, Melia azedarach Linne var. japoinca Makino) suppressed their expression. Dust mite allergen increased PAR-2, ICAM-1 and IL-6 expression in HaCaT cells in a dose-dependent manner up to $3{\mu}g/mL$ but their expression reached the plateau over the dosages. The allergen ($3{\mu}g/mL$) also secreted more cytokines such as tumor necrosis factor (TNF)-${\alpha}$ and IL-6 into the media. Among five different herbal extracts ($50{\mu}g/mL$), Mori Cortex Radicis and Sanguisorba officinalis L. suppressed the PAR-2, ICAM-1 and IL-6 expression in HaCaT cells, which was activated by dust mite allergen ($3{\mu}g/mL$) and they also reduced the secretion of TNF-${\alpha}$ and IL-6 into the media. In conclusion, Mori Cortex Radicis and Sanguisorba officinalis L. can effectively reduce the prevalence and progression of atopic dermatitis by dute mite allergen.

Ecklonia cava Extract Containing Dieckol Suppresses RANKL-Induced Osteoclastogenesis via MAP Kinase/NF-κB Pathway Inhibition and Heme Oxygenase-1 Induction

  • Kim, Seonyoung;Kang, Seok-Seong;Choi, Soo-Im;Kim, Gun-Hee;Imm, Jee-Young
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권1호
    • /
    • pp.11-20
    • /
    • 2019
  • Ecklonia cava, an edible marine brown alga (Laminariaceae), is a rich source of bioactive compounds such as fucoidan and phlorotannins. Ecklonia cava extract (ECE) was prepared using 70% ethanol extraction and ECE contained 67% and 10.6% of total phlorotannins and dieckol, respectively. ECE treatment significantly inhibited receptor activator of nuclear $factor-{\kappa}B$ ligand (RANKL)-induced osteoclast differentiation of RAW 264.7 cells and pit formation in bone resorption assay (p <0.05). Moreover, it suppressed RANKL-induced $NF-{\kappa}B$ and mitogen-activated protein kinase signaling in a dose dependent manner. Downregulated osteoclast-specific gene (tartrate-resistant acid phosphatase, cathepsin K, and matrix metalloproteinase-9) expression and osteoclast proliferative transcriptional factors (nuclear factor of activated T cells-1 and c-fos) confirmed ECE-mediated suppression of osteoclastogenesis. ECE treatment ($100{\mu}g/ml$) increased heme oxygenase-1 expression by 2.5-fold and decreased intercellular reactive oxygen species production during osteoclastogenesis. The effective inhibition of RANKL-stimulated osteoclast differentiation and oxidative stress by ECE suggest that ECE has therapeutic potential in alleviating osteoclast-associated disorders.

Negative regulators in RANKL-induced osteoclastogenesis

  • Lee, Jun-Won;Kim, Kab-Sun;Kim, Nack-Sung
    • International Journal of Oral Biology
    • /
    • 제32권1호
    • /
    • pp.1-5
    • /
    • 2007
  • Receptor activator of nuclear factor ${\kappa}B$ ligand (RANKL) induces osteoclast formation from hematopoietic cells via up-regulation of positive regulators, including $NF-{\kappa}B$, c-Fos, microphthalmia transcription factor (Mitf), PU.1, and nuclear factor of activated T cells (NFAT) c1. In addition to the positive regulation by these transcription factors, RANKL appears to regulate negative regulators such as MafB and inhibitors of differentiation (Ids). Ids and MafB are abundantly expressed in osteoclast precursors, bone marrowderived monocyte/macrophage lineage cells (BMMs). Expression levels of these genes are significantly reduced by RANKL during osteoclastogenesis. Overexpression of these genes in BMMs inhibits the formation of tartarate-resistant acid phosphatase (TRAP)-positive multinuclear osteoclasts by down-regulation of NFATc1 and osteoclast-associated receptor (OSCAR), which are important for osteoclast differentiation. Furthermore, reduced expression of these genes enhances osteoclastogenesis and increases expression of NFATc1 and OSCAR. Taken together, RANKL induces osteoclastogenesis via up-regulation of positive regulators as well as down-regulation of negative regulators.

RAW 264.7 세포에서 sulforaphane의 파골세포형성 저해효과 (Effects of Sulraphane on Osteoclastogenesis in RAW 264.7)

  • 황준호;이미란;강창희;부희정
    • 농업생명과학연구
    • /
    • 제50권2호
    • /
    • pp.151-160
    • /
    • 2016
  • 염증성 사이토카인은 파골세포형성과정에서 중요한 요인이며, 뼈의 흡수는 자주 골다공증과 연결된다. 설포라판은 보로콜리의 화뢰로 부터 분리된 물질로 염증성 사이토카인을 억제한다고 알려져 있다. 본 실험에서는 Receptor activator of nuclear factor kappaB ligand(RANKL)로 자극된 세포에서 설포라판이 파골세포 형성 억제에 대한 효과를 측정하였다. 설포라판은 대식세포인 RAW 264.7 세포에서 파골세포 특이 마커 유전자인 tartrate-resistant acid phosphatase(TRAP), Cathepsin K, matrix metalloproteinase 9(MMP-9), calcitonin receptor을 저해하였으며, TRAP, MMP-9, tumor necrosis factor receptor-associated factor 6(TRAF6)와 전사인자인 nuclease factor of activated T cells(NFATc1)의 단백질 발현과 RANKL로 자극하였을 때 전자인사인 nuclear factor kappaB(NF-kappaB)의 전사활성도 억제 하였다. 이와 같은 결과로 설포라판이 NF-kappaB의 전사활성 억제뿐만 아니라, 파골세포형성인자(TRAP, cathepsin K, MMP-9, calcitonin, NFATc1)와 NFATc1의 발현을 억제시키는 효과가 있음을 확인하였다.

Tusc2/Fus1 regulates osteoclast differentiation through NF-κB and NFATc1

  • Kim, Inyoung;Kim, Jung Ha;Kim, Kabsun;Seong, Semun;Kim, Nacksung
    • BMB Reports
    • /
    • 제50권9호
    • /
    • pp.454-459
    • /
    • 2017
  • Tumor suppressor candidate 2 (Tusc2, also known as Fus1) regulates calcium signaling, and $Ca^{2+}$-dependent nuclear factor of activated T-cells (NFAT) and nuclear factor kappa B ($NF-{\kappa}B$) pathways, which play roles in osteoclast differentiation. However, the role of Tusc2 in osteoclasts remains unknown. Here, we report that Tusc2 positively regulates the differentiation of osteoclasts. Overexpression of Tusc2 in osteoclast precursor cells enhanced receptor activator of nuclear factor ${\kappa}B$ ligand (RANKL)-induced osteoclast differentiation. In contrast, small interfering RNA-mediated knockdown of Tusc2 strongly inhibited osteoclast differentiation. In addition, Tusc2 induced the activation of RANKL-mediated $NF-{\kappa}B$ and calcium/calmodulin-dependent kinase IV (CaMKIV)/cAMP-response element (CRE)-binding protein CREB signaling cascades. Taken together, these results suggest that Tusc2 acts as a positive regulator of RANKL-mediated osteoclast differentiation.

Lipoteichoic Acid Isolated from Staphylococcus aureus Induces Both Epithelial-Mesenchymal Transition and Wound Healing in HaCaT Cells

  • Kim, Seongjae;Kim, Hyeoung-Eun;Kang, Boyeon;Lee, Youn-Woo;Kim, Hangeun;Chung, Dae Kyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권10호
    • /
    • pp.1820-1826
    • /
    • 2017
  • Lipoteichoic acid (LTA), a cell wall component of gram-positive bacteria, is recognized by Toll-like receptor 2, expressed on certain mammalian cell surfaces, initiating signaling cascades that include nuclear factor kappa-light-chain-enhancer of activated B cells (NF-${\kappa}B$) and mitogen-activated protein kinase. There are many structural and functional varieties of LTA, which vary according to the different species of gram-positive bacteria that produce them. In this study, we examined whether LTA isolated from Staphylococcus aureus (aLTA) affects the expression of junction proteins in keratinocytes. In HaCaT cells, tight junction-related gene expression was not affected by aLTA, whereas adherens junction-related gene expression was modified. High doses of aLTA induced the phosphorylation of extracellular signal-regulated protein kinases 1 and 2, which in turn induced the epithelial-mesenchymal transition (EMT) of HaCaT cells. When cells were given a low dose of aLTA, however, NF-${\kappa}B$ was activated and the total cell population increased. Taken together, our study suggests that LTA from S. aureus infections in the skin may contribute both to the outbreak of EMT-mediated carcinogenesis and to the genesis of wound healing in a dose-dependent manner.

미세먼지로 인한 피부 각질 세포 손상에서 몰약 에탄올 추출물의 항염증 효과 (Anti-inflammatory Effects of Myrrh Ethanol Extract on Particulate Matter-induced Skin Injury)

  • 정영희;노연화;정명수
    • 대한한의학회지
    • /
    • 제43권3호
    • /
    • pp.1-15
    • /
    • 2022
  • Objectives: Myrrh have been used as a traditional remedy to treat infectious and inflammatory diseases. However, it is largely unknown whether myrrh ethanol extract could exhibit the inhibitory activities against particulate matter (PM)-induced skin injury on human keratinocytes, HaCaT cells. Therefore, this study was aimed to investigate the inhibitory activity of myrrh ethanol extract on PM-induced skin injury in HaCaT cells. Methods: To investigate the inhibitory effects of myrrh ethanol extract in HaCaT cells, the skin injury model of HaCaT cells was established under PM treatment. HaCaT keratinocyte cells were pre-treated with myrrh ethanol extract for 1 h, and then stimulated with PM. Then, the cells were harvested to measure the cell viability, reactive oxygen species (ROS), pro-inflammatory cytokines including interleukin (IL) 1-beta, IL-6, and tumor necrosis factor (TNF)-𝛼, hyaluronidase, collagen, MMPs. In addition, we examined the mitogen activated protein kinases (MAPKs) and inhibitory kappa B alpha (I𝜅-B𝛼) as inhibitory mechanisms of myrrh ethanol extract. Results: The treatment of myrrh ethanol extract inhibited the PM-induced cell death and ROS production in HaCaT cells. In addition, myrrh ethanol extract treatment inhibited the PM-induced elevation of IL-1beta, IL-6, and TNF-𝛼. Also, myrrh ethanol extract treatment inhibited the increase of hyaluronidase, MMP and decrease of collagen. Furthermore, myrrh ethanol extract treatment inhibited the activation of MAPKs and the degradation of I𝜅-B𝛼. Conclusions: Our result suggest that treatment of myrrh ethanol extract could inhibit the PM-induced skin injury via deactivation of MAPKs and nuclear factor (NF)-𝜅B in HaCaT cells. This study could suggest that myrrh ethanol extract could be a beneficial agent to prevent skin damage or inflammation.

RAW 264.7 세포에 있어 t10c12-CLA의 ROS를 통한 TNF-${\alpha}$ 생산 및 NF-${\kappa}B$ 활성 조절 (Trans-10, cis-12 Conjugated Linoleic Acid Modulates Tumor Necrosis Factor-${\alpha}$ Production and Nuclear Factor-${\kappa}B$ Activation in RAW 264.7 Macrophages Through Formation of Reactive Oxygen Species)

  • 박소영;강병택;강지훈;양만표
    • 한국임상수의학회지
    • /
    • 제31권6호
    • /
    • pp.469-476
    • /
    • 2014
  • 본 연구는 염증상태에서의 CLA의 효과와 작용기전을 알아보기 위해 LPS-자극 RAW 264.7 macrophages에 있어 ROS 생성과 TNF-${\alpha}$ 생산, NF-${\kappa}B$$PPAR{\gamma}$ 활성을 검토하였다. t10c12-CLA는 LPS로 자극하지 않은 비염증시의 RAW 세포에서는 ROS 생성을 증가시켜 TNF-${\alpha}$ 생산을 유도하였으며, 이 효과는 $PPAR{\gamma}$ 활성화에 의존해서 NF-${\kappa}B$ 활성 증가에 의해 매개되었다. 반면, LPS로 자극한 염증조건의 RAW 세포에서는 t10c12-CLA가 $PPAR{\gamma}$ 활성화에 의존하지 않는 경로로 ROS 생성 및 과도한 TNF-${\alpha}$ 생산을 억제하였다. 본 결과로부터 CLA는 ROS 생성을 통해 TNF-${\alpha}$ 생산 및 NF-${\kappa}B$ 활성을 염증 유무에 따라 조절하는 것으로 사료되었다.