• Title/Summary/Keyword: Nuclear archaeology

Search Result 4, Processing Time 0.022 seconds

Towards inferring reactor operations from high-level waste

  • Benjamin Jung;Antonio Figueroa;Malte Gottsche
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2704-2710
    • /
    • 2024
  • Nuclear archaeology research provides scientific methods to reconstruct the operating histories of fissile material production facilities to account for past fissile material production. While it has typically focused on analyzing material in permanent reactor structures, spent fuel or high-level waste also hold information about the reactor operation. In this computational study, we explore a Bayesian inference framework for reconstructing the operational history from measurements of isotope ratios from a sample of nuclear waste. We investigate two different inference models. The first model discriminates between three potential reactors of origin (Magnox, PWR, and PHWR) while simultaneously reconstructing the fuel burnup, time since irradiation, initial enrichment, and average power density. The second model reconstructs the fuel burnup and time since irradiation of two batches of waste in a mixed sample. Each of the models is applied to a set of simulated test data, and the performance is evaluated by comparing the highest posterior density regions to the corresponding parameter values of the test dataset. Both models perform well on the simulated test cases, which highlights the potential of the Bayesian inference framework and opens up avenues for further investigation.

Personal identification of the excavated ancient human bone through molecular-biological methods (분자생물학적 방법을 통한 출토인골의 개인 동정-사천 늑도 출토 인골과 민통선 민묘 출토 인골을 중심으로)

  • Seo, Min-Seok;Lee, Kyu-Shik;Chung, Yong-Jae;Lee, Myeong-Hui
    • 보존과학연구
    • /
    • s.22
    • /
    • pp.27-40
    • /
    • 2001
  • DNA typing is often used to determine identity from human remains. Recently, the molecular biological analysis of ancient deposits has become possible since methods for the recovery of DNA conserved in bones or teeth from archaeological remains have been developed. In the field of archaeology, one of the most promising approaches is to identify the individuals present in a mass burial site. We performed nuclear DNA typing and mitochondrial DNA sequencing analysis based on PCR from a Korea ancient human remain excavated from Sa-chon Nuk-island and civilian access controlline(CACL). A femur bone were collected and successfully subjected to DNA extraction, quantification, PCR amplification, and subsequently typed for several shot tandem repeat(STR)loci. 4 types of STR systems used in this study were CTT multiplex(CSF1PO, TPOX, TH01), FFv multiplex(F13A01, FESFPS, vWA), Silver STRⅢ multiplex(D16S539, D7S820, D13S317), and amelogenin for sex determination. This studies are primarily concerned with the extraction, amplification, and DNA typing of ancient human bone DNA samples. Also, it is suggestive of importance about closely relationship between both fields of archaeology and molecular biology.

  • PDF

Neutron activation analysis: Modelling studies to improve the neutron flux of Americium-Beryllium source

  • Didi, Abdessamad;Dadouch, Ahmed;Jai, Otman;Tajmouati, Jaouad;Bekkouri, Hassane El
    • Nuclear Engineering and Technology
    • /
    • v.49 no.4
    • /
    • pp.787-791
    • /
    • 2017
  • Americium-beryllium (Am-Be; n, ${\gamma}$) is a neutron emitting source used in various research fields such as chemistry, physics, geology, archaeology, medicine, and environmental monitoring, as well as in the forensic sciences. It is a mobile source of neutron activity (20 Ci), yielding a small thermal neutron flux that is water moderated. The aim of this study is to develop a model to increase the neutron thermal flux of a source such as Am-Be. This study achieved multiple advantageous results: primarily, it will help us perform neutron activation analysis. Next, it will give us the opportunity to produce radio-elements with short half-lives. Am-Be single and multisource (5 sources) experiments were performed within an irradiation facility with a paraffin moderator. The resulting models mainly increase the thermal neutron flux compared to the traditional method with water moderator.

A Genetic Analysis of Human Remains from the Myeongam-ri Site, Asan City (아산 명암리 출토 인골의 유전자 분석)

  • Seo, Min-Seok;Lee, Kyu-Shik;Chung, Yong-Jae;Kim, Kyung-Kyu;Pak, Yang-Jin
    • 보존과학연구
    • /
    • s.23
    • /
    • pp.59-75
    • /
    • 2002
  • In this study human bones and teeth, excavated from the Myeongam-risite in Asan, Chungcheongnam-do Province, have been analysed by nuclear DNA typing and mitochondrial DNA sequencing methods. Twenty-one samples of long bones and twenty-seven samples of teeth from twenty-one individuals were collected and analysed. Among these thirteenteeth were successfully subjected to nuclear DNA extraction, quantification, and PCR(Polymerase Chain Reaction) amplification. Silver STR III (D16S539, D7S820, D13S317) multiplex PCR method was used in this study for a short tandem repeat (STR) analysis. Mitochondrial DNAs of tooth samples were also amplified and sequenced by a DNA sequencer. These analyses show that a sample from Burial no. 29 and one from Burial no. 38(right) possessed the same maternal inheritance. This may suggest that the Myeongam-ri cemetery was used by a kin group for a relatively long period of time.

  • PDF