DOI QR코드

DOI QR Code

Towards inferring reactor operations from high-level waste

  • Benjamin Jung (Nuclear Verification and Disarmament, RWTH Aachen University) ;
  • Antonio Figueroa (Nuclear Verification and Disarmament, RWTH Aachen University) ;
  • Malte Gottsche (Nuclear Verification and Disarmament, RWTH Aachen University)
  • Received : 2023.11.02
  • Accepted : 2024.02.16
  • Published : 2024.07.25

Abstract

Nuclear archaeology research provides scientific methods to reconstruct the operating histories of fissile material production facilities to account for past fissile material production. While it has typically focused on analyzing material in permanent reactor structures, spent fuel or high-level waste also hold information about the reactor operation. In this computational study, we explore a Bayesian inference framework for reconstructing the operational history from measurements of isotope ratios from a sample of nuclear waste. We investigate two different inference models. The first model discriminates between three potential reactors of origin (Magnox, PWR, and PHWR) while simultaneously reconstructing the fuel burnup, time since irradiation, initial enrichment, and average power density. The second model reconstructs the fuel burnup and time since irradiation of two batches of waste in a mixed sample. Each of the models is applied to a set of simulated test data, and the performance is evaluated by comparing the highest posterior density regions to the corresponding parameter values of the test dataset. Both models perform well on the simulated test cases, which highlights the potential of the Bayesian inference framework and opens up avenues for further investigation.

Keywords

Acknowledgement

The authors gratefully acknowledge the funding provided by a Freigeist Fellowship grant of the VolkswagenStiftung. The authors also gratefully acknowledge the computing time provided to them at the NHR Center NHR4CES at RWTH Aachen University (project number p0020230). This is funded by the Federal Ministry of Education and Research, and the state governments participating on the basis of the resolutions of the GWK for national high performance computing at universities (www.nhr-verein.de/unsere-partner).

References

  1. Alexander Glaser, Malte Gottsche, Fissile material stockpile declarations and cooperative nuclear archaeology, in: Verifiable Declarations of Fissile Material Stocks: Challenges and Solutions, in: FM(C)T Meeting Series, UNIDIR, 2017, pp. 25-38.
  2. Christopher J. Gesh, A Graphite Isotope Ratio Method: A Primer on Estimating Plutonium Production in Graphite Moderated Reactors, Technical Report PNNL-14568, Pacific Northwest National Laboratory, 2004.
  3. Alex Gasner, Alexander Glaser, Nuclear archaeology for heavy-water-moderated plutonium production reactors, Sci. Global Secur. 19 (3) (2011) 223-233, http://dx.doi.org/10.1080/08929882.2011.616124.
  4. Patrick J. O'Neal, Sunil S. Chirayath, Qi Cheng, A machine learning method for the forensics attribution of separated plutonium, Nucl. Sci. Eng. 196 (7) (2022) 811-823, http://dx.doi.org/10.1080/00295639.2021.2024037.
  5. Shengli Chen, Tianxiang Wang, Zhong Zhang, Runfeng Li, Su Yuan, Ruiyi Zhang, Cenxi Yuan, Chunyu Zhang, Jianyu Zhu, Linear regression and machine learning for nuclear forensics of spent fuel from six types of nuclear reactors, Phys. Rev. A 19 (3) (2023) 034028, http://dx.doi.org/10.1103/PhysRevApplied.19.034028.
  6. Antonio Figueroa, Malte Gottsche, Nuclear archaeology: Reconstructing reactor histories from reprocessing waste, ESARDA Bull. (59) (2019) 38-46.
  7. Antonio Figueroa, Malte Gottsche, Nuclear archaeology based on measurements of reprocessing waste: first experimental results, in: INMM/ESARDA 2021 Joint Annual Meeting, 2021, online.
  8. A. Gelman, J.B. Carlin, H.S. Stern, D.B. Dunson, A. Vehtari, D.B. Rubin, R. Christensen, W. Johnson, A. Branscum, T.E. Hanson, B.P. Carlin, T.A. Louis, R.G. Miller, D. Lunn, C. Jackson, N. Best, A. Thomas, D. Spiegelhalter, T. Leonard, T.S. Ferguson, P. Sprent, J.Q. Smith, J. Lawson, H.C. Tuckwell, B.J.T. Morgan, M. Woodward, D.A.G. Rees, L.L. Kupper, B.H. Neelon, S.M. O'Brien, Bayesian Data Analysis, third ed..
  9. John Salvatier, Thomas V. Wiecki, Christopher Fonnesbeck, Probabilistic programming in Python using PyMC3, PeerJ Comput. Sci. 2 (2016) e55, http://dx.doi.org/10.7717/peerj-cs.55.
  10. Antonio Figueroa, Malte Gottsche, Gaussian processes for surrogate modeling of discharged fuel nuclide compositions, Ann. Nucl. Energy 156 (2021) 108085, http://dx.doi.org/10.1016/j.anucene.2020.108085.
  11. Jaakko Leppanen, Maria Pusa, Tuomas Viitanen, Ville Valtavirta, Toni Kaltiaisenaho, The serpent Monte Carlo code: status, development and applications in 2013, Ann. Nucl. Energy 82 (2015) 142-150, http://dx.doi.org/10.1016/j.anucene.2014.08.024.
  12. Paul K. Romano, Nicholas E. Horelik, Bryan R. Herman, Adam G. Nelson, Benoit Forget, Kord Smith, OpenMC: A state-of-the-art Monte Carlo code for research and development, Ann. Nucl. Energy 82 (2015) 90-97, http://dx.doi.org/10.1016/j.anucene.2014.07.048.
  13. Julien de Troullioud de Lanversin, Moritz Kutt, Alexander Glaser, ONIX: An open-source depletion code, Ann. Nucl. Energy 151 (2021) 107903, http://dx.doi.org/10.1016/j.anucene.2020.107903.
  14. Alex Ulianov, Othmar Muntener, Urs Schaltegger, The ICPMS signal as a Poisson process: A review of basic concepts, J. Anal. At. Spectrom. 30 (6) (2015) 1297-1321, http://dx.doi.org/10.1039/C4JA00319E.
  15. D.A. Brown, M.B. Chadwick, R. Capote, A.C. Kahler, A. Trkov, M.W. Herman, A.A. Sonzogni, Y. Danon, A.D. Carlson, M. Dunn, D.L. Smith, G.M. Hale, G. Arbanas, R. Arcilla, C.R. Bates, B. Beck, B. Becker, F. Brown, R.J. Casperson, J. Conlin, D.E. Cullen, M.-A. Descalle, R. Firestone, T. Gaines, K.H. Guber, A.I. Hawari, J. Holmes, T.D. Johnson, T. Kawano, B.C. Kiedrowski, A.J. Koning, S. Kopecky, L. Leal, J.P. Lestone, C. Lubitz, J.I. Marquez Damian, C.M. Mattoon, E.A. McCutchan, S. Mughabghab, P. Navratil, D. Neudecker, G.P.A. Nobre, G. Noguere, M. Paris, M.T. Pigni, A.J. Plompen, B. Pritychenko, V.G. Pronyaev, D. Roubtsov, D. Rochman, P. Romano, P. Schillebeeckx, S. Simakov, M. Sin, I. Sirakov, B. Sleaford, V. Sobes, E.S. Soukhovitskii, I. Stetcu, P. Talou, I. Thompson, S. van der Marck, L. Welser-Sherrill, D. Wiarda, M. White, J.L. Wormald, R.Q. Wright, M. Zerkle, G. Zerovnik, Y. Zhu, ENDF/B-VIII.0: the 8 th major release of the nuclear reaction data library with CIELO-project cross sections, new standards and thermal scattering data, Nucl. Data Sheets 148 (2018) 1-142, http://dx.doi.org/10.1016/j.nds.2018.02.001.
  16. D.A. Brown, Cross Section Evaluation Working Group, Status of the ENDF/B Nuclear Data Library, Nucl. Data Sheets 118 (2014) 98-103, http://dx.doi.org/10.1016/j.nds.2014.04.010.