• Title/Summary/Keyword: Nuclear and radiation

Search Result 2,727, Processing Time 0.029 seconds

Study on multi-objective optimization method for radiation shield design of nuclear reactors

  • Yao Wu;Bin Liu;Xiaowei Su;Songqian Tang;Mingfei Yan;Liangming Pan
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.520-525
    • /
    • 2024
  • The optimization design problem of nuclear reactor radiation shield is a typical multi-objective optimization problem with almost 10 sub-objectives and the sub-objectives are always demanded to be under tolerable limits. In this paper, a design method combining multi-objective optimization algorithms with paralleling discrete ordinate transportation code is developed and applied to shield design of the Savannah nuclear reactor. Three approaches are studied for light-weighted and compact design of radiation shield. Comparing with directly optimization with 10 objectives and the single-objective optimization, the approach by setting sub-objectives representing weight and volume as optimization objectives while treating other sub-objectives as constraints has the best performance, which is more suitable to reactor shield design.

Health monitoring of carbon fiber-reinforced polymer composites in γ-radiation environment using embedded fiber Bragg grating sensors

  • Jing Zhong;Feida Chen;Yuehao Rui;Yong Li;Xiaobin Tang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.3039-3045
    • /
    • 2023
  • Fiber-reinforced polymer (FRP) composites are considered suitable candidates for structural materials of spacecrafts due to their excellent properties of high strength, light weight, and corrosion resistance. An online health monitoring method for FRP composites must be applied to space structures. However, the application of existing health monitoring methods to space structures is limited due to the harsh space environment. Here, carbon fiber-reinforced polymer (CFRP) composites embedded with fiber Bragg grating (FBG) sensors were prepared to explore the feasibility of strain monitoring using embedded FBG sensors in γ-radiation environment. The analysis of the influence of radiation on the strain monitoring demonstrated that the embedded FBG can be successfully applied to the health monitoring of FRP composites in radiation environment.

Radiation stability and radiolysis mechanism of hydroxyurea in HNO3 solution: Alpha, beta, and gamma irradiations

  • Yilin Qin;Wei Liao;Tu Lan;Fengzhen Li;Feize Li;Jijun Yang;Jiali Liao;Yuanyou Yang;Ning Liu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4660-4670
    • /
    • 2022
  • Hydroxyurea (HU) is a novel salt-free reductant used potentially for the separation of U/Pu in the advanced PUREX process. In this work, the radiation stability of HU were systematically investigated in solution by examining the effects of the type of rays (α, β, and γ irradiations), the absorbed dose (10-50 kGy), and the HNO3 concentration (0-3 mol L-1). The influence degree on HU radiolysis rates followed the order of the absorbed dose > the ray type > the HNO3 concentration, but the latter two had moderate effects on HU radiolysis products where NH4+ and NO2- were found to be the most abundant ones, suggesting that the differences of α, β, and γ rays should be considered in the study of irradiation effects. The radiolysis mechanism was explored using density functional theory (DFT) calculations, and it proposed the dominant radiolysis paths of HU, indicating that the radiolysis of HU was mainly a free radical reaction among ·H, eaq-, H2O, intermediates, and the radiolytic free radical fragments of HU. The results reported here provide valuable insights into the mechanistic understanding of HU radiolysis under α, β, and γ irradiations and reliable data support for the application of HU in the reprocessing of spent fuel.

Effects of Education Concerning Radiation and Nuclear Safety and Regulation on Elementary, Middle, and High School Students in Korea

  • Choi, Yoon-Seok;Kim, Jung-Min;Han, Eun-Ok
    • Journal of Radiation Protection and Research
    • /
    • v.45 no.3
    • /
    • pp.108-116
    • /
    • 2020
  • Background: This foundational study on educational interventions aimed to analyze the changes in awareness, knowledge, and attitudes of young learners after they received objective information on safety management. Materials and Methods: Educational sessions on nuclear power and radiation safety were delivered to 4,934 Korean elementary, middle, and high school students in two separate sessions conducted in 2016 and 2017. The effects of these interventions were subsequently analyzed. Results and Discussion: Learner attitudes toward safety were found to be the predominant variables affecting the post-intervention risk (safety) awareness of nuclear power generation. Conclusion: The safety awareness of future generations will significantly influence policy decisions on nuclear power generation. Hence, the design of educational interventions on this subject must match variables suited to learner levels.

A Dual Radiation Monitoring System Ror Robot Working in High Radiation Field (고방사선장내 작업 로봇용 이중 방사선 감지 시스템)

  • Lee Nam-Ho;Cho Jai-Wan;Kim Seung-Ho
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.9
    • /
    • pp.556-558
    • /
    • 2005
  • The effect of high irradiation on inspection systems in a nuclear power plant can be severe, especially to electronic components such as control hoards. The effect may lead to a critical malfunction or trouble to a underwater robot for inspection and maintenance of nuclear reactor. However, if information on the total accumulated dose on the sensitive parts of the robot is available, a prediction of robot's behavior in radiation environments becomes possible. To know how much radiation the robot has encountered, a dosimeter to measure the total accumulated dose is necessary. This paper describes the development effort of a dual radiation monitoring system using a SiC diode as a dose-rate meter and a p-type power MOSFET as a dose meter. This attempt using two sensors which detect same radiation improves reliability and stability at high intensity radiation detection in nuclear facilities. It uses the concept of diversity and redundancy.

A Study on Estimation of Radiation Exposure Dose During Dismantling of RCS Piping in Decommissioning Nuclear Power Plant

  • Lee, Taewoong;Jo, Seongmin;Park, Sunkyu;Kim, Nakjeom;Kim, Kichul;Park, Seongjun;Yoon, Changyeon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.2
    • /
    • pp.243-253
    • /
    • 2021
  • In the dismantling process of a reactor coolant system (RCS) piping, a radiation protection plan should be established to minimize the radiation exposure doses of dismantling workers. Hence, it is necessary to estimate the individual effective dose in the RCS piping dismantling process when decommissioning a nuclear power plant. In this study, the radiation exposure doses of the dismantling workers at different positions was estimated using the MicroShield dose assessment program based on the NUREG/CR-1595 report. The individual effective dose, which is the sum of the effective dose to each tissue considering the working time, was used to estimate the radiation exposure dose. The estimations of the simulation results for all RCS piping dismantling tasks satisfied the dose limits prescribed by the ICRP-60 report. In dismantling the RCS piping of the Kori-1 or Wolsong-1 units in South Korea, the estimation and reduction method for the radiation exposure dose, and the simulated results of this study can be used to implement the radiation safety for optimal dismantling by providing information on the radiation exposure doses of the dismantling workers.

Development of an efficient method of radiation characteristic analysis using a portable simultaneous measurement system for neutron and gamma-ray

  • Jin, Dong-Sik;Hong, Yong-Ho;Kim, Hui-Gyeong;Kwak, Sang-Soo;Lee, Jae-Geun;Jung, Young-Suk
    • Analytical Science and Technology
    • /
    • v.35 no.2
    • /
    • pp.69-81
    • /
    • 2022
  • The method of measuring and classifying the energy category of neutrons directly using raw data acquired through a CZT detector is not satisfactory, in terms of accuracy and efficiency, because of its poor energy resolution and low measurement efficiency. Moreover, this method of measuring and analyzing the characteristics of low-energy or low-activity gamma-ray sources might be not accurate and efficient in the case of neutrons because of various factors, such as the noise of the CZT detector itself and the influence of environmental radiation. We have therefore developed an efficient method of analyzing radiation characteristics using a neutron and gamma-ray analysis algorithm for the rapid and clear identification of the type, energy, and radioactivity of gamma-ray sources as well as the detection and classification of the energy category (fast or thermal neutrons) of neutron sources, employing raw data acquired through a CZT detector. The neutron analysis algorithm is based on the fact that in the energy-spectrum channel of 558.6 keV emitted in the nuclear reaction 113Cd + 1n → 114Cd + in the CZT detector, there is a notable difference in detection information between a CZT detector without a PE modulator and a CZT detector with a PE modulator, but there is no significant difference between the two detectors in other energy-spectrum channels. In addition, the gamma-ray analysis algorithm uses the difference in the detection information of the CZT detector between the unique characteristic energy-spectrum channel of a gamma-ray source and other channels. This efficient method of analyzing radiation characteristics is expected to be useful for the rapid radiation detection and accurate information collection on radiation sources, which are required to minimize radiation damage and manage accidents in national disaster situations, such as large-scale radioactivity leak accidents at nuclear power plants or nuclear material handling facilities.

THE SHORT-TERM EFFECTS OF LOW-DOSE-RATE RADIATION ON EL4 LYMPHOMA CELL

  • Bong, Jin-Jong;Kang, Yu-Mi;Shin, Suk-Chul;Choi, Moo-Hyun;Choi, Seung-Jin;Lee, Kyung-Mi;Kim, Hee-Sun
    • Journal of Radiation Protection and Research
    • /
    • v.37 no.2
    • /
    • pp.56-62
    • /
    • 2012
  • To determine the biological effects of low-dose-rate radiation ($^{137}Cs$, 2.95 mGy/h) on EL4 lymphoma cells during 24 h, we investigated the expression of genes related to apoptosis, cell cycle arrest, DNA repair, iron transport, and ribonucleotide reductase. EL4 cells were continuously exposed to low-dose-rate radiation (total dose: 70.8 mGy) for 24 h. We analyzed cell proliferation and apoptosis by trypan blue exclusion and flow cytometry, gene expression by real-time PCR, and protein levels with the apoptosis ELISA kit. Apoptosis increased in the Low-dose-rate irradiated cells, but cell number did not differ between non- (Non-IR) and Low-dose-rate irradiated (LDR-IR) cells. In concordance with apoptotic rate, the transcriptional activity of ATM, p53, p21, and Parp was upregulated in the LDR-IR cells. Similarly, Phospho-p53 (Ser15), cleaved caspase 3 (Asp175), and cleaved Parp (Asp214) expression was upregulated in the LDR-IR cells. No difference was observed in the mRNA expression of DNA repair-related genes (Msh2, Msh3, Wrn, Lig4, Neil3, ERCC8, and ERCC6) between Non-IR and LDR-IR cells. Interestingly, the mRNA of Trfc was upregulated in the LDR-IR cells. Therefore, we suggest that short-term Low-dose-rate radiation activates apoptosis in EL4 lymphoma cells.

Analysis of University Student Awareness of Radiation Exposures from Consumer Products

  • Kim, SeungHwan;Cho, Kunwoo
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.1
    • /
    • pp.57-70
    • /
    • 2016
  • Background: Since the terminology 'radioactive consumer product' is not quite familiar to the public and is often considered as negative and detrimental things, the educational curriculum is essential for establishing reliability of nuclear energy related and for the development of better communication strategy of radiation risk with the public. To provide base data which is valuable for establishing efficient curriculum of education and training about radiation safety, it is necessary to apprehend the different level of awareness of radiation exposures classified by various consumer products. Materials and Methods: On November 2014, a question investigation about asking awareness level of radiation exposure from various consumer products was done for university students who are highly educated. The object students are studied at a four-year-course universities which is located at Daejeon City. Results and Discussion: Although the average awareness level is comparatively low, the awareness of senior students, who major in radiation, nuclear related departments and male students are relatively high. On the other hand, the awareness of freshman, sophomore, junior students, who do not major in radiation, nuclear related departments and female students are relatively low. It is necessary to provide various information to avoid unnecessary concerns and misconceptions about radiation exposure. Conclusion: This paper will be an instrument for efficient establishment of curriculum of education and training related with radiation safety.

EDUCATIONAL EFFECTS OF RADIATION WORK-STUDY ACTIVITIES FOR ELEMENTARY, MIDDLE, AND HIGH SCHOOL STUDENTS

  • Han, Eun Ok;Kim, Jae Rok;Choi, Yoon Seok
    • Nuclear Engineering and Technology
    • /
    • v.46 no.3
    • /
    • pp.447-460
    • /
    • 2014
  • The results of this study, suggest public communication to promote the use of radiation as follows: first, suitable information for the recipient's perception patterns should be provided, as there is a difference in risk perception and acceptance between the experts and the public. Thus, information on the necessity of nuclear power should be provided to the public, while information based on technical risks is provided by the experts. Second, since the levels of perception, knowledge, and attitudes increased highly for sectors which use radiation after the class, classes should be provided continuously to increase students' perception, knowledge, and attitude, which are all preemptive variables which induce positive behavioral changes. Third, since the seven sectors which use radiation are highly correlated, arguments for the necessity of other sectors should be based on the necessity of the medical sector.