• Title/Summary/Keyword: Nuclear Steam Generator

Search Result 665, Processing Time 0.031 seconds

Development of Automatic Inspection and Maintenance Technology for Steam Generator in Nuclear Power Plants (원자력 발전소 증기세관 자동검사 및 보수 기술개발)

  • Seo, W.H.;Jung, D.Y.;Lee, J.W.;Han, S.H.
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.542-547
    • /
    • 2000
  • In this paper, we propose a new approach to the development of the automatic vision system to examine and repair the steam generator tubes at remote distance. In nuclear power plants, workers are reluctant of works in steam generator because of the high radiation environment and limited working space. It is strongly recommended that the examination and maintenance works be done by an automatic system for the protection of the operator from the radiation exposure. Digital signal processors are used in implementing real time recognition and examination of steam generator tubes in the proposed vision system. Performance of proposed digital vision system is illustrated by simulation and experiment for similar steam generator model.

  • PDF

A Study on Vision System Design for Automatic Inspection of Steam Generator in Nuclear Power Plants (원전 스팀제너레이터 세관 자동검사용 로봇 비젼시스템 설계에 관한 연구)

  • 서운학
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.571-578
    • /
    • 1999
  • In this paper, we propose a new approach to the development of the automatic vision system to examine and repair the steam generator tubes at remote distance. In nuclear power plants, workers are reluctant of works in steam generator because of the high radiation environment and limited working space. It is strongly recommended that the examination and maintenance works be done by an automatic system for the protection of the operator from the radiation exposure. Digital signal processors are used in implementing real time recognition and examination of steam generator tubes in the proposed vision system. Performance of proposed digital vision system is illustrated by simulation and experiment for similar steam generator model.

  • PDF

Design of Intelligent Robot Vision System for Automatic Inspection of Steam Generator of Nuclear Plant (원자력 발전소 스팀제너레이터의 자동검사를 위한 지능형 로봇 비젼 시스템 설계)

  • 한성현
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.6
    • /
    • pp.19-33
    • /
    • 2000
  • In this paper, we propose anew approach to the development of the automatic vision system to examine and repair the steam generator tubes at remote distance. In nuclear power plants, workers are reluctant of works in steam generator because of the high radiation environment and limited working space. It is strongly recommended that the examination and maintenance works be done by an automatic system for the protection of the operator from the radiation exposure. Digital signal processors are used in implementing real time recognition and examination of steam generator tubes in the proposed vision system. Performance of proposed digital vision system is illustrated by simulation and experiment for similar steam generator model.

  • PDF

Thermal-Hydraulic Analysis Methodology of Nuclear Power Plant Steam Generator (원전 증기발생기 열유동 해석법)

  • Choi Seok-Ki;Kim Seong-O;Choi Hoon-Ki
    • Journal of computational fluids engineering
    • /
    • v.7 no.2
    • /
    • pp.43-52
    • /
    • 2002
  • This paper presents the numerical methodology of ATHOS3 code for thermal hydraulic analysis of steam generators in nuclear power plant. Topics include porous media approach, governing equations, physical models and correlations for solid-to-fluid interaction and heat transfer, and numerical solution scheme. The ATHOS3 code is applied to the thermal hydraulic analysis of steam generator in the Korea Kori Unit-1 nuclear power plant and the computed results are presented

Separate and integral effect tests of aerosol retention in steam generator during tube rupture accident

  • Lee, Byeonghee;Kim, Sung-Il;Ha, Kwang Soon
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2702-2713
    • /
    • 2022
  • A steam generator tube rupture accompanying a core damage may cause the fission product to be released to environment bypassing the containment. In such an accident, the steam generator is the major path of the radioactive aerosol release. AEOLUS facility, the scaled-down model of Korean type steam generator, was built to examine the aerosol removal in the steam generator during the steam generator tube rupture accident. Integral and separate effect tests were performed with the facility for the dry and flooded conditions, and the decontamination factors were presented for different tube configurations and submergences. The dry test results were compared with the existing test results and with the analyses to investigate the aerosol retention physics by the tube bundle, with respect to the particle size and the bundle geometry. In the flooded tests, the effect of submergence were shown and the retention in the jet injection region were presented with respect to the Stokes number. The test results are planned to be used to constitute the aerosol retention model, specifically applicable for the analysis of the steam generator tube rupture accident in Korean nuclear power plants to evaluate realistic fission product behavior.

Steam Generator Management Program (원전 증기발생기 관리프로그램)

  • Cho, Nam-Cheoul;Kim, Moo-Soo;Lee, Kwang-Woo
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.610-616
    • /
    • 2003
  • Recently, the common concern of nuclear power industry in the development of technology mitigating and preventing the aging of steam generator tubes prevails, because the trends of steam generator flaws at Uljin unit #1,2 and KSNP(Korea Standard Nuclear Power Plant) impose a burden on the operation of nuclear power plant. While the regulatory agency is demanding the establishment of the advanced general performance maintenance system, the steam generator management program adapting advanced technology is being developed which may comply with EPRI PWR SG Guidelines based on NEI 97-06 ‘ General Guidelines including all the maintenance aspects consist of the tube integrity assessment criteria, repair limit, allowable leakage level, water chemistry will be composed in order to obtain the approval of regulatory agency and be applied to Nuclear power plant early 2005. This presentation is to introduce maintenance state including SG tube degradation and main contents of advanced SG management program being developed, and futhermore update present and future plan, and estimate the alternation after the completion.

  • PDF

Vision System Design for Automatic Test and Repair of Steam Generator Holes in Nuclear Power Plants (원자력발전소 증기 발생기의 자동검사 및 수리를 위한 비젼시스템 설계)

  • 한성현
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.6
    • /
    • pp.5-14
    • /
    • 1998
  • In this paper we propose a new approach to the development of the automatic vision system to examine and repair the steam generator tubes at remote distance. In nuclear power plants, workers are reluctant of works in steam generator because of the high radiation environment and limited working space. It is strongly recommended that the examination and maintenance works be done by an automatic system for the protection of the operator from the radiation exposure. Digital signal processors are used in implementing real time recognition and examination of steam generator tubes in the proposed vision system. Performance of proposed digital vision system is illustrated by simulation and experiment for similar steam generator model.

  • PDF

A Brief Review on the Design Factors of Steam Generator U-Tube Assembly for CANDU Type Nuclear Power Plant

  • Park, Nam-Il;Park, June-Soo
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05d
    • /
    • pp.321-326
    • /
    • 1996
  • During the plant operation, steam generator U-tube assembly will potentially be subject to adverse environmental conditions which can cause damages to them. This report addresses the major design factors of CANDU type steam generator which are intended to minimize the potential tube damages. Such factors include U-tube material, high circulation ratio, tube-to-tubesheet joint, tube support design. Also a few suggestions are presented for the design and performance improvement of CANDU type steam generators.

  • PDF

An Adaptive Receding Horizon Controller for the Nuclear Steam Generator Water Level

  • Na, Man-Gyun;Sim, Young-Rok
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1479-1482
    • /
    • 2002
  • In this work, a recursive parameter estimation algorithm estimates the mathematical model of steam generators every time step and a receding horizon controller is designed by using this estimated linear steam generator model of which parameters change as time goes on. It was shown through application to a linear model of steam generator that the proposed controller has good performance.

  • PDF

A Study on the Relationship between Steam Generator Fouling and the Electric Power (증기발생기 파울링과 전기출력의 상관성 고찰)

  • Cho, Nam Cheoul;Shin, Dong Man;Kim, Yong Sik
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.13 no.2
    • /
    • pp.31-37
    • /
    • 2017
  • The heat transfer function or thermal performance is the most important function of the steam generator component in nuclear power plants. The declining of thermal performance, fouling does not affect the electric power of the nuclear power plant within a certain fouling level, but it affects the output when goes beyond the governor valve wide open of the turbine. The VWO steam pressure can be predicted through the thermal performance evaluation of steam generators in the nuclear power plant. In consideration of the fouling characteristics of the steam generator, methods of the thermal performance evaluation and fouling cases are reviewed, and also the critical VWO value is estimated through the actual thermal performance evaluation. It is necessary to apply the VWO theory based on the thermal performance of the steam generators.