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Abstract: In this work, a recursive parameter estimation
algorithm estimates the mathematical model of steam
generators every time step and a receding horizon controlier
is designed by using this estimated linear steam generator
model of which parameters change as time goes on. It was
shown through application to a linear model of steam
generator that the proposed controller has good
performance.

1. Introduction

The water level control problem of steam generators has
been a main cause of unexpected shutdown of nuclear
power plants. In particular, since the swell and shrink
phenomena are significantly greater at low power, even to a
skilled operator, it is difficult to react effectively in
response to such a reverse dynamics of the water level,
which is induced by the non-minimum phase effects. Also,
the steam generator is a highly complex, non-linear, and
time-varying system. Therefore, many advanced control
methods have been suggested to resolve the steam
generator water level control problem.

The receding horizon control is a kind of model
predictive control that has received much attention as a
powerful tool for the control of industrial process systems
[1-3]. The basic concept of the model predictive control is
to solve an optimization problem for a finite future at
current time and to implement the first optimal control
input as the current control input. This method presents
many advantages over the conventional infinite horizon
control because it is possible to handle input and state (or
output) constraints in a systematic manner during the
design and implementation of the control. In particular, it
has been proved to be a suitable control strategy for time
varying systems. .

Therefore, in this work, the receding horizon control
method combined with a parameter estimation algorithm of
the extended least-squares method [4] was used to solve the
steam generator water level control problems.

2. Receding Horizon Control
The receding horizon control method is to solve an
optimization problem for a finite future at current time and
to implement the first optimal control input as the current
control input among the solved optimal control inputs of

several time steps. The procedure is then repeated at each
subsequent instant. The purpose of taking new
measurements at each time step is to compensate for
unmeasured disturbances and model inaccuracy, both of
which cause the measured system output to be different
from the one predicted by the model.

In order to achieve fast responses and prevent excessive
control effort, the associated performance index for
deriving an optimal control input is represented by the
following quadratic function:
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where Au,, is the difference between the feedwater
flowrate u and the steam flowrate v, and N and M are
called the prediction horizon and the control horizon,
respectively. The prediction horizon represents the limit of
the instant in which it is desired for the output to follow the
reference sequence. In order to obtain control inputs, the
predicted outputs have to be first calculated as a function of
past values of inputs and outputs and of future control
signals.

The process is described by the Controlled Auto-
Regressive and Integrated Moving Average (CARIMA)
model:

A@ ™)y = B(g™)Au,, (t-D +D(gHEE) . ()
The process output at time ¢ + j can be predicted from

the measurements of the output and input up to time step .
The j -step-ahead output prediction of a process is derived

below.
Multiplying Eg. (2) by Z; (¢g™") from the left gives (the
most usual case of D(g~')=1 will be considered here)
Y+ N-E g+ =F g W) +E,(a™) | (3
B(g™)Au,, (t+j-1
where E;(¢”') and F;(g™") are polynomials satisfying
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Equation (4) is called the Diophantine equation, whose
solution can be found by an efficient recursive algorithm to

be shown later. There exist unique polynomials E; (q"l)-

and Fj(q") of order j—1 and nd -1, respectively, such
that e;, = 1. By taking the expectation operator on the
both side of Eq. (3) and considering the zero mean noise
E{f(t)}=0 , the optimal j -step-ahead prediction of
¥t + j| 1) satisfies

P+ jlt) = Fi(q w0 +Gi (g HAu, (t+ =1, (5)
where

Gia™)=E;(¢™HB@™).

Yt + j1£) denotes an estimated value of the output at time
step ¢+ j based on all the data up to time step . The
output prediction can easily be extended to the nonzero
mean noise case by adding a term E; (g7 )E{é‘(t+ j)} to
the output prediction y(t + jl1).

By dividing the polynomial, G, (¢g7") into two terms,
like the following equations:
Gia7)=Gi(g)+q7G,(q™")
with 5(5, (q”))< J
the prediction equation, Eq. (5), can now be written as

M+ j10) = Gi(g™)Au,, (1 + j 1)

+Gy(q ™), (=D + Fy(g™)00),
where &(-) denotes the order of a polynomial. The last two

terms of the right hand side of Eq. (7) consist of past values
of the process input and output variables and correspond to
the response of the process if the control input signals are
kept constant. On the other hand, the first term of the right
hand side consists of present and future values of Au,,
signals and corresponds to the response obtained when the
initial conditions are zero y(f—j)=0, Au,(t-j-1)=0
for j > 0[5]. Equation (7) can be rewritten as

P+ j10) = Gilg " HAu,, (t+j-D+ f;, )
where
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Then a set of N j -step-shead output predictions can be
expressed as
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If all initial conditions are zero, the response f is zero. If a
unit step is applied to the first input at time ¢ ; that is,

Au,, =[10---0)" , the sequence
G+ p(t+2)--- ¢+ N)]" is equal to the first column

expected output

of the matrix G .

The computation of the control input involves the
inversion of an N x N matrix G that requires a substantial
amount of computation. If the control signal is kept
constant after the first M control moves (that is,
Au,, (t+ j—1)=0 for j> M), this leads to the inversion
of an M xM matrix, which reduces the amount of
computation. If so, the set of predictions affecting the
objective function can be expressed as

¥=G,Au, +1, (11)
where
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— 0
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Aug =[Au,,(6) Au,,(t+1) Au,,(t+M-D)]7.
The following relationship can be derived from the
foregoing equation:

Y, =Gyhu, +f,, 12)

where
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The objective function of Eq. (1) can be rewritten as the
following matrix-vector form:

PN T
J =5(y—W)’ Q(y-W)+-5AﬂfRAus

(13)
=%(asAus +f—-w)rd-ésAus +f—w)+—;_Au§RA“S’
subject to constraint W, = G Au, +f o (14
where
1480
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w=[we+1[0) wi+2]0) wit+N (0],
W,o=[Wt+N+1]8) we+N+2[t) - wt+N+m|n))".
6 = a’iag(Q, “ery Q) is a diagonal matrix consisting of N

diagonal elements, Q , and ﬁ:diag(,u---,y) is a
diagonal matrix consisting of M diagonal elements, u .

The optimal input can be obtained by the well-known
Lagrange multiplier approach. To apply the Lagrange
multiplier approach, the objective function is rewritten as

J‘=-;—E5Aus +f—w)T(~)(EsAus +f—w)+%Aufl~2Aus

+ ).T(Eszus +i, —wf).
The optimal control input can be expressed as

0 GE AT Gt

S R
(16)

In order to obtain the control input from Eq. (16), it is
necessary to calculate the matrices G, , —G-sf , and the

(15)

vectors f and f IE These matrix and vector can be

calculated recursively. From now on, the derivation will be
described.

By taking into account a new Diophantine equation
corresponding to the prediction for y(t + j +1|f), Eq. (4)
can also be rewritten as follows:

1=E;, (‘I—‘ )A(q M+ q_(j+l)Fj+1 (g M.

Subtracting Eq. (4) from Eq. (17) gives

0B -E@ )+ lF Fu@-E@ . (8)
Since the matrix £,,;(¢”") - E;(¢"") is of order j,

an

the matrix can be written as
Ej(@™)-E,q)=Pg™)+pa7, (19)
where F(q") is a polynomial of order smaller than or
equal to j—1. By substituting Eq. (19) into Eq. (18)

0=Rg)Ag ) +q7|p Aq " +q Frug-Fig™)] . 20)

Since A(g~') is monic, ﬁ(q'1)= 0. Therefore, from
Eq. (20) the polynomial E (g™") can be calculated
recursively by

Ein@"=E(a")+p;q7’. @1

The following expressions can easily be obtained from
Eq. 21):

p;= f 0> (22)

Sjri = Fjin —pjaiy for i=0,.--,8(F,).  (23)

Also, it can easily be seen that the initial conditions for

the recursion equation are given by
E =1,

Fy=qll- ™).

24
25)

The vectors f and f, can be computed by the
following recursive relationship:
Fin=ali=A@™)) ) + Blg™ )8, e+ J),
with fo =y(t), Au,, (t+ j)=0 for j20.
Also, the polynomial, G;(g”') , can be obtained

(26)

recursively as follows:
Gin@ ) =En(@™Ba@)=G,@ ™)+ f0q'Bg ™. (@7

3. Parameter Estimation
From Eq. (5) the optimal one-step-ahead prediction of
y(t + 1)) 1s as follows:
He+11) = Rg W+ G M)
=—Gl) =GNt ~ D+ —&, Ht ~nd+1)
+ B (O +Bsg e =1+ Byl 1B,
Equation (28) can be expressed in the following inner
product of the parameter vector 0 (#) and the measurement

(28)

vector @(t) :
He+D=67()-9(),
where
o (t)=[—él(t) ~&y(t) - =aa) B HO) - 13,,B(t)] ,
o) =[y(®) »(t-1) - y(t-nd+1)
Aty (8) Aug, (t—1) - Au,,(t—nB)|

The parameter vector 0 (#) is estimated as follows [4]:
8= -+ R -Dpo -8 ¢ --ge-1],  30)

1 F(t - Dot - Do’ ¢ -DF¢-1)
F = - Y 1
® [F(t b /?.(t)+(pT(t—1)F(t—1)(p(t—1)] Gh

(29)

A
where the covariance matrix F(0) >0 and 0< A(¢t)<1. The
forgetting factor A(#) is calculated from the following
equation [4]:

AR) = A -+ (1= 4)
with 4, <1 and A(0)<1

Figure 1 shows the schematic diagram of the receding
horizon controller combined with a parameter estimation
algorithm.

(32)

Adaptive Receding Horizon Control
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Fig. 1. Schematic diagram of an adaptive receding horizon
control method.
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4. Application to the Steam Generator Water

Level Control
The linear steam generator model derived by Irving [6] was
used. Since the parameter values are given at several
specific power levels and very different according to the
power levels, the parameters of the controlled plant were
interpolated versus power. The prediction and control
horizons were chosen as 20 and 10, respectively, and the
same values were used regardless of power level. The
weighting matrices are chosen to be Q=1 and R=l .
The input-weighting factor u is different according to
power level to accomplish good performance but its value

can be chosen easily and decreases exponentially as power
level increases.
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Fig. 2. Performance of the proposed controller for the linear

model.
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Fig. 3. Comparison of the proposed controller and the PI
controller for the linear model at 5% power.

Figure 2 shows the performances of this proposed
controller. In these figures, all values represent the
difference from the corresponding steady state values.
Therefore, all values are zeros at + =0 . Also, noise signals
are added to describe a real plant. The magnitude of the
steam flow disturbance between 5000 sec and 6000 sec
corresponds to 5 percent steam flowrate increase at each

corresponding power level. The proposed control algorithm
tracks well the setpoint and steam flowrate changes. The
swell and shrink phenomena are larger at low power levels
than those at high power levels. Also, the water level tracks
its setpoint faster at high powers than at low powers.

Figure 3 shows the performances of the proposed
controller (which corresponds to the 5% power simulation
of Fig. 2) and the conventional PI (proportional integral)
controller around 5 percent power level. In this simulation,
the PI controller gains were optimized by a genetic
algorithm. The proposed controller shows better
performance under ramp change of the steam flowrate
disturbance and the step and ramp changes of the water
level setpoint, and also shows a little faster response.

5. Conclusions

In this work, the adaptive predictive controller was
developed to control the water level of nuclear steam
generators. The steam generator water level controller was
designed to effectively cope with water level deviation and
steam flow disturbance and especially, computer
simulations were conducted to investigate the output
tracking performance and swell and shrink characteristics.
The proposed controller was compared to the PI controller
and was known to have better performance. Since the steam
generator has nonlinear characteristics, the proposed
algorithm was applied to a nonlinear model of the nuclear
steam generator to examine its actual performance. Also,
the proposed controller showed good performance for this
nonlinear plant against the water level setpoint and steam
flowrate (measurable disturbance) changes.
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