• Title/Summary/Keyword: Nuclear Power Plant

Search Result 3,367, Processing Time 0.028 seconds

Development of a Web-based Fatigue Life Evaluation System for Primary Components in a Nuclear Power Plant (원자력발전소 1차 계통 주요기기에 대한 웹기반 피로수명평가 시스템 개발)

  • Seo, Hyong-Won;Lee, Sang-Min;Choi, Jae-Boong;Kim, Young-Jin;Choi, Sung-Nam;Jang, Ki-Sang;Hong, Sung-Yull
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.6
    • /
    • pp.663-669
    • /
    • 2004
  • A nuclear power plant is composed of a number of primary components. Maintaining the integrity of these components is one of the most critical issues in nuclear industry. In order to maintain the integrity of these primary components, a complicated procedure is required including regular in-service inspection, failure assessment, fracture mechanics analysis, etc. Also, experts in different fields have to co-operate to resolve the integrity issues on the basis of inspection results. This integrity evaluation process usually takes long, and thus, is detrimental for the plant productivity. Therefore, an effective safety evaluation system is essential to manage the integrity issues on a nuclear power plant. In this paper, a web-based fatigue life evaluation system for primary components in nuclear power plant is proposed. This system provides engineering knowledge-based information and concurrent and collaborative working environment through internet, and thus, is expected to raise the efficiency of integrity evaluation procedures on primary components of a nuclear power plant.

Development of a Web-based Fatigue Life Evaluation System for Primary Components in a Nuclear Power Plant (원자력발전소 1 차 계통 주요기기에 대한 웹기반 피로수명평가 시스템 개발)

  • Seo, Hyong-Won;Lee, Sang-Min;Choi, Jae-Boong;Kim, Young-Jin;Choi, Sung-Nam;Jang, Ki-Sang;Hong, Sung-Yull
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.279-284
    • /
    • 2003
  • A nuclear power plant is composed of a number of primary components. Maintaining the integrity of these components is one of the most critical issues in nuclear industry. In order to maintain the integrity of these primary components, a complicated procedure is required including regular in-service inspection, failure assessment, fracture mechanics analysis, etc. Also, experts in different fields have to co-operate to resolve the integrity issues on the basis of inspection results. This integrity evaluation process usually takes long, and thus, is detrimental for the plant productivity. Therefore, an effective safety evaluation system is essential to manage the integrity issues on a nuclear power plant. In this paper, a web-based fatigue life evaluation system for primary components in nuclear power plant is proposed. This system provides engineering knowledge-based information and concurrent and collaborative working environment through internet, and thus, is expected to raise the efficiency of integrity evaluation procedures on primary components of a nuclear power plant.

  • PDF

Comparison of Radiation Exposures from Coal-fired and Nuclear Power Plants (석탄발전과 원자력발전에 의한 방사선피폭 비교 연구)

  • Han, Moon-Hee;Kim, Byung-Woo;Yoo, Byung-Sun;Lee, Jeong-Ho
    • Nuclear Engineering and Technology
    • /
    • v.19 no.2
    • /
    • pp.99-106
    • /
    • 1987
  • Comparison study on the radiological effects by radionuclides from hypothetical 1,000MWe coal-fired power station and nuclear power plant is made. This paper describes the radiological effects only for gaseous effluents released in normal operation. Source terms for coal-fired Power station are quoted from foreign data and those for nuclear power plant are calculated for reference power plant. Gaussian plume model is used to assess atmospheric dispersion of radioactive effluents based on one year meteorological data of Kori site and individual doses are calculated at the maximum X/Q point. Doses from nuclear power plant are slightly more than those from coal-fred power plant. In the case of coal-fired power plant, doses by ingestion of contaminated vegetation are 73.5% of total doses.

  • PDF

Kt Factor Analysis of Lead-Acid Battery for Nuclear Power Plant

  • Kim, Daesik;Cha, Hanju
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.4
    • /
    • pp.460-465
    • /
    • 2013
  • Electrical equipments of nuclear power plant are divided into class 1E and non-class 1E. Electrical equipment and systems that are essential to emergency reactor shutdown, containment isolation, reactor core cooling, and containment and reactor heat removal, are classified as class 1E. batteries of nuclear power plant are divided into four channels, which are physically and electrically separate and independent. The battery bank of class 1E DC power system of the nuclear power plant use lead-acid batteries in present. The lead acid battery, which has a high energy density, is the most popular form of energy storage. Kt factor of lead-acid battery is used to determine battery size and it is one of calculatiing coefficient for capacity. this paper analyzes Kt factor of lead-acid battery for the DC power system of nuclear power plant. In addition, correlation between Kt parameter and peukert's exponent of lead-acid battery for nuclear plant are discussed. The analytical results contribute to optimize of determining size Lead-acid battery bank.

A Study on Design Elements of Main Control Room in Nuclear Power Plants by Analyzing Space Characteristics (원자력발전소 주제어실의 공간특성에 따른 디자인 요소에 관한 연구)

  • Lee, Seung-Hoon;Lee, Tae-Yeon
    • Korean Institute of Interior Design Journal
    • /
    • v.19 no.6
    • /
    • pp.249-256
    • /
    • 2010
  • For guaranteeing for security of nuclear power plant, ergonomic factors have been applied to design of main control room, core area for management and control of nuclear power plant, but design elements for performance of operators have been ignored. As the behaviors of operators are important for security of nuclear power plant, space design which makes them pleasant psychologically and makes them maintain attention on security equipments ceaselessly is required. Therefore, the purpose of this study is to analyze space characteristics of main control rooms according to regulations of nuclear power plant and general guidelines of space design, and to offer basic data for designing of main control room which makes operators pleasant psychologically and physically. At first, theoretical issues related with design of main control room are reviewed and several premises of space are developed by abstracting design elements from common space and regulations of nuclear power plant and, then integrating each design elements interactively. In short, the improvement of system environment based on human-machine interface space has brought about perceptual, cognitive, and spatial changes and has realized next generation of main control rooms. And, differences and similarities between ordinary space and main control room, which ergonomic sizes and regulations are applied and is VDT environment based on LDP, are discussed in relation to 13 design elements and 17 space premise.

Thermal-Hydraulic Analysis Methodology of Nuclear Power Plant Steam Generator (원전 증기발생기 열유동 해석법)

  • Choi Seok-Ki;Kim Seong-O;Choi Hoon-Ki
    • Journal of computational fluids engineering
    • /
    • v.7 no.2
    • /
    • pp.43-52
    • /
    • 2002
  • This paper presents the numerical methodology of ATHOS3 code for thermal hydraulic analysis of steam generators in nuclear power plant. Topics include porous media approach, governing equations, physical models and correlations for solid-to-fluid interaction and heat transfer, and numerical solution scheme. The ATHOS3 code is applied to the thermal hydraulic analysis of steam generator in the Korea Kori Unit-1 nuclear power plant and the computed results are presented

The Mock-Up Test for Applying Rebar Modularization to the Wall of Nuclear Power Plant (원전 벽체구조물의 철근모듈화 적용을 위한 Mock-Up 실험연구)

  • Lee, Byung-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.7-8
    • /
    • 2016
  • We are developing the technology for applying the Rebar Modularization Method to the Nuclear Power Plant Structures. To achieve this, we had developed the elementary technology for applying this method to Nuclear Power Plant Structures efficiently and performed the Mock-Up Test by using the developed elementary technology. By analysing this test result, we deduced the problems and found solutions to solve them.

  • PDF

Analysis Model on Risk Factors of RCB Construction in Nuclear Power Plant (원자력 발전 플랜트 RCB 시공의 리스크 요인에 관한 분석 모델)

  • Shin, Dae-Woong;Shin, Yoonseok;Kim, Gwang-Hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.212-213
    • /
    • 2014
  • The purpose of this study is to suggest analysis model of RCB construction in nuclear power plant. For the objective, This study drew the risk factors of RCB construction from existing literature. The results of the study proposed analysis model made hierarchy in rebar, form, and concrete work. These will be baseline data for risk management in construction project of nuclear power plant.

  • PDF

Development of Performance Analysis Methodology for Nuclear Power Plant Turbine Cycle Using Validation Model of Performance Measurements (원전 터빈사이클 성능 데이터의 검증 모델에 의한 성능분석 기법의 개발)

  • Kim, Seong-Geun;Choe, Gwang-Hui
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.12
    • /
    • pp.1625-1634
    • /
    • 2000
  • Verification of measurements is required for precise evaluation of turbine cycle performance in nuclear power plant. We assumed that initial acceptance data and design data of the plant could provide correlation information between performance data. The data can be used as sample sets for the correct estimation model of measurement value. The modeling was done practically by using regression model based on plant design data, plant acceptance data and verified plant performance data of domestic nuclear power plant. We can construct more robust performance analysis system for an operation nuclear power plant with this validation scheme.

Technological Catching-up of Nuclear Power Plant in Korea: The Case of OPR1000

  • Lee, Tae Joon;Lee, Young-Joon
    • Asian Journal of Innovation and Policy
    • /
    • v.5 no.1
    • /
    • pp.92-115
    • /
    • 2016
  • This paper presents how Korea succeeded in developing an indigenous nuclear power plant model over fifty years. Long-lasting national R&D for technical progress and the Korean government for managerial process were the two pillars in the build-up of indigenous Nuclear Power Plant (NPP) technological capabilities. The concept of technological capabilities is used to examine its evolutionary process with a qualitative and longitudinal approach. The government had a developing country ambition to formulate a strategic plan for technical self-reliance on nuclear power plant while establishing the country’s institutions and organization structure for the plan. Under the government leadership, it was national R&D that led to the resolution of a good number of technological problems, efficiently, by absorbing imported technologies and effectively adapting them to local circumstances.