• 제목/요약/키워드: Nuclear Material Safeguards

검색결과 35건 처리시간 0.019초

극한 환경 내 안전조치 장비 운영에 관한 연구 (Research on the Operation of Safeguards Equipment in Extreme Environmental Conditions)

  • 한지영;박수희;박제완;김용민
    • 한국방사선학회논문지
    • /
    • 제17권7호
    • /
    • pp.1189-1195
    • /
    • 2023
  • 원자력 시설 사찰, 검증 등의 상황을 가정하였을 때, 현장 내 안전조치 장비의 정상 작동 담보는 필수적 요소이다. 카자흐스탄의 핵실험금지조약 현장 사찰 대비 훈련에서 극저온으로 인해 장비가 정상 운영되지 못한 선례가 있으며 북한 풍계리 핵실험장의 연중 최저 기온은 영하 30도 내외이다. 한반도 원자력 활동 현장 검증을 위해서는 극한 환경 내 장비의 정상 작동 담보를 위한 관련 연구가 필요하며, 여기에는 사찰 및 검증에 활용되는 장비 확인, 정상 작동을 방해하는 위험요인 분석 등이 포함된다. 본 연구는 극한 환경 내 장비의 정상 운영을 위한 위험성 분석, 환경 기반 성능 시험 기준 및 절차 개발을 목적으로 한다. 이를 위해 IAEA 안전조치 방법, 활용 장비 분석, 한반도 환경 특성과 현장 검증을 위한 운반에 따른 위험성 분석을 수행하고 성능 시험 기준 및 절차를 제시하였다. 연구 결과는 핵활동 검증 및 감시 과정에서 참고 자료로 활용될 수 있으며, 한반도 비핵화 참여에 대비한 정책 및 전략 수립에 기여할 것으로 판단된다.

Ability of non-destructive assay techniques to identify sophisticated material partial defects

  • Lloyd, Cody;Goddard, Braden
    • Nuclear Engineering and Technology
    • /
    • 제52권6호
    • /
    • pp.1252-1258
    • /
    • 2020
  • This study explores the ability of non-destructive assay techniques to detect a partial material defect in which 100 g of plutonium are diverted from the center of a 1000 g can of PuO2 powder. Four safeguards measurements techniques: neutron multiplicity counting, calorimetry, gravimetry, and gamma ray spectroscopy are used in an attempt to detect the defect. Several materials are added to the partial defect PuO2 can to replicate signatures of the diverted material. 252Cf is used to compensate for the doubles neutron counts, 241Am is used to compensate for the decay heat, and aluminum is used to compensate for the weight. Although, the doubles and triples difference before and after diversion are statistically indistinguishable with the AWCC in fast and thermal mode, the difference in the singles counts are statistically detectable in both modes. The relatively short half-life of 252Cf leads to a decrease (three sigma uncertainty) in the doubles neutron counts after 161 days. Combining this with the precise quantity of 241Am needed (10.7 g) to mimic the heat signature and the extreme precision in 252Cf mass needed to defeat neutron multiplicity measurements gives reassurance in the International Atomic Energy Agency's ability to detect partial material defects.

경.중수로 연계 핵연료 주기 (DUPIC)관련 핵물질 보장조치 (Safeguards)

  • 나원우;이용덕;차홍렬;김호동;홍종숙;박현수
    • Nuclear Engineering and Technology
    • /
    • 제27권3호
    • /
    • pp.447-452
    • /
    • 1995
  • 경·중수로 연계 핵연료 주기 (Direct Use of Spent PWR Fuel in CANDU : DUPIC ) 기술개발의 핵물질 보장조치(Safeguards)는 경수로 사용후 핵연료를 중수로에 재 활용하기 위한 DUPIC 공정에 대한 최적 보장조치 시스템을 구축하여, 국제 원자력 기구(IAEA) 및 국제 원자력 사회에서 핵 투명성확보 및 신뢰도를 향상시키는 것을 기술개발의 목적으로 하고 있다. DUPIC 공정은 고립된 차폐시설내의 고준위 방사선장 하에서 가동되므로 타 시설에 비해 핵 물질 전용 가능성은 희박하지만, 전 공정이 원격제어 되야 하고, 조업조건이 정복해야 하므로 기존의 보장조치 기술보다 더욱 발전된 계량관리시스템, 측정시스템 및 감시시스템 등을 개발하여야 한다. 이를 위해 본 연구에서는 각 항목에 대한 요소 분석 및 각 항목별 향후 연구방향에 대해 분석하였다. DUPIC 공정 전반에 대한 핵물질 계량관리를 위해 물질수지구역 (Material Balance Area : MBA) 및 주요측정 지점 (Key Measurement Point : KMP )을 설정하여 각 측정지점별 측정방법 및 재고검증(Inventory Verification) 방법을 분석하였다. 최적 측정시스템을 개발하기 위해 적용 가능한 비파괴분석 방법들을 분석한 결과, 핵분열성 물질 함량을 정량적으로 측정할 수 있는 수동적 중성자 측정법이 가장 적합하다는 결론을 얻었다. 또한, 감시시스템을 개발하기 위해 전용전략의 주요 요소 및 전용경로 등을 분석하였으며, 핵물질 및 시설에 대한 물리적 방호체제를 DUPIC시설에 적용하기 위하여 물리적 방호에 필요한 방호체제 요소를 분석하여 DUPIC 시설을 위한 가상적인 방호체제를 구축하였다.

  • PDF

Isotopic Analysis of NUSIMEP-6 Uranium Particles using SEM-TIMS

  • Park, Jong-Ho;Park, Sujin;Song, Kyuseok
    • Mass Spectrometry Letters
    • /
    • 제4권3호
    • /
    • pp.51-54
    • /
    • 2013
  • Isotopic analysis using thermal ionization mass spectrometry coupled with scanning electron microscopy (SEM-TIMS) was performed to determine the isotopic ratios of uranium contained in micro-particles in the 6th Nuclear Signatures Interlaboratory Measurement Evaluation Programme (NUSIMEP-6) sample. Elemental analysis by energy dispersive X-ray spectroscopy (EDS) was conducted on uranium-bearing mirco-particles, which were transferred to rhenium filaments for TIMS loading using a micromanipulation system in a SEM. A multi-ion-counter system was utilized to detect the ion signals of the four isotopes of uranium simultaneously. The isotope ratios of uranium corrected by bracketing using a reference material showed excellent agreement with the certified values. The measurement accuracy for $n(^{234}U)/n(^{238}U)$ and (b) $n(^{235}U)/n(^{238}U)$ was 10% and 1%, respectively, which met the requirements for qalification for the NetWork of Analytical Laboratories (NWAL).

Estimating North Korea's nuclear capabilities: Insights from a study on tritium production in a 5MWe graphite-moderated reactor

  • Sungmin Yang;Manseok Lee;Danwoo Ko;Gyunyoung Heo;Changwoo Kang;Seung Min Woo
    • Nuclear Engineering and Technology
    • /
    • 제56권7호
    • /
    • pp.2666-2675
    • /
    • 2024
  • This study explores the potential for tritium production in North Korea's 5MWe graphite-moderated reactor, a facility primarily associated with nuclear weapons material production. While existing research on these reactors has largely centered on plutonium, our focus shifts to tritium, a crucial element in boosted fission bombs. Utilizing the MCNP6 code for simulations, the results estimate that North Korea can possibly produce approximately 7-12 g of tritium annually. This translates to the potential production of 1-3 boosted fission bombs each year. By incorporating tritium production into assessments of North Korea's nuclear capabilities, our methodology provides insights into the dynamics of the country's nuclear force, revealing a more diversified and complex composition than previously assumed. The findings significantly aid policymakers, regulatory bodies, and researchers in comprehending potential proliferation risks associated with graphite-moderated reactors and in developing strategies to address the nuclear threat emanating from North Korea.

Application and testing of a triple bubbler sensor in molten salts

  • Williams, A.N.;Shigrekar, A.;Galbreth, G.G.;Sanders, J.
    • Nuclear Engineering and Technology
    • /
    • 제52권7호
    • /
    • pp.1452-1461
    • /
    • 2020
  • A triple bubbler sensor was tested in LiCl-KCl molten salt from 450 to 525 ℃ in a transparent furnace to validate thermal-expansion corrections and provide additional molten salt data sets for calibration and validation of the sensor. In addition to these tests, a model was identified and further developed to accurately determine the density, surface tension, and depth from the measured bubble pressures. A unique feature of the model is that calibration constants can be estimated using independent depth measurements, which allow calibration and validation of the sensor in an electrorefiner where the salt density and surface tension are largely unknown. This model and approach were tested using the current and previous triple bubbler data sets, and results indicate that accuracies are as high as 0.03%, 4.6%, and 0.15% for density, surface tension, and depth, respectively.

The National Inspection at KAERI

  • Kim, Hyun-Sook;Lee, Byung-Doo;Kim, In-Cheol;Kim, Hyun-Jo;Jung, Ju-Ang;Lee, Sung-Ho
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2016년도 춘계학술논문요약집
    • /
    • pp.25-26
    • /
    • 2016
  • In this paper, the major changes of the national inspection in respect of the KAERI nuclear facilities were summarized. The frequency of the national inspection was decreased since the amendment of the Notification of the NSSC on the national inspection. But the national inspection broadened its scope and its implementation procedures and criteria were not clear. So, it is necessary to establish and enhance the national inspection system including the implementing guides and criteria. In addition, the internal regulation of the nuclear material accountancy for the nuclear facilities should be approved from the NSSC and observed by the KAERI in accordance with the national law. As the Notification of the NSSC on the national inspection was amended in Sep. 2014, it need to be revised to reflect the detail accountancy procedures and the preparation of the national inspection. So, KAERI will revise it to meet the international and national requirements as well as to implement the safeguards effectively at facility level.

  • PDF

MEASUREMENT OF $^{235}U$ ENRICHMENT USING THE SEMI-PEAK-RATIO TECHNIQUE WITH CdZnTe GAMMA-RAY DETECTOR

  • Ha, J.H.;Ko, W.I.;Lee, S.Y.;Song, D.Y.;Kim, H.D.;Yang, M.S.
    • Journal of Radiation Protection and Research
    • /
    • 제26권3호
    • /
    • pp.275-279
    • /
    • 2001
  • In uranium enrichment plants and nuclear fuel fabrication facilities, exact measurement of fissile isotope enrichment of uranium is required for material accounting in international safeguards inspection as well as process quality control. The purpose of this study was to develop a simple measurement system which can portably be used at nuclear fuel fabrication plants especially dealing with low enriched uranium. For this purpose, a small size CZT (CdZnTe) detector was used, and the detector performance in low uranium gamma/X -rays energy range was investigated by use of various enriched uranium oxide samples. New enrichment measurement technique and analysis method for low enriched uranium oxide, so-called, 'semi-peak ratio technique' was developed. The newly developed method was considered as an alternative technique for the low enrichment and would be useful to account nuclear material in safeguarding activity at nuclear fuel fabrication facility.

  • PDF

ORGANIZATIONAL CONTRIBUTIONS TO NUCLEAR POWER PLANT SAFETY

  • GHOSH S. TINA;APOSTOLAKIS GEORGE E.
    • Nuclear Engineering and Technology
    • /
    • 제37권3호
    • /
    • pp.207-220
    • /
    • 2005
  • Nuclear power plants (NPP) are complex socio-technological systems that rely on the success of both hardware and human components. Empirical studies of plant operating experience show that human errors are important contributors to accidents and incidents, and that organizational factors play an important role in creating contexts for human errors. Current probabilistic safety assessments (PSA) do not explicitly model the systematic contribution of organizational factors to safety. As some countries, like the United States, are moving towards increased use of risk information in the regulation and operation of nuclear facilities, PSA quality has been identified as an area for improvement. The modeling of human errors, and underlying organizational weaknesses at the root of these errors, are important sources of uncertainty in existing PSAs and areas of on-going research. This paper presents a review of research into the following questions: Is there evidence that organizational factors are important to NPP safety? How do organizations contribute to safety in NPP operations? And how can these organizational contributions be captured more explicitly in PSA? We present a few past incidents that illustrate the potential safety implications of organizational deficiencies, some mechanisms by which organizational factors contribute to NPP risk, and some of the methods proposed in the literature for performing root-cause analyses and including organizational factors in PSA.

실시간 능동형 타입 격납장치 개발 (Development of Real-Time Active Type Seals)

  • 신중기;백희균;이용주
    • 방사선산업학회지
    • /
    • 제18권1호
    • /
    • pp.9-14
    • /
    • 2024
  • In order to thoroughly verify the denuclearization of the Korean Peninsula, it is urgent to develop technology capabilities to monitor, detect, collect, analyze, interpret, and evaluate nuclear activities using nuclear materials and secure nuclear transparency. The IAEA is actively using seal technology to maximize the efficiency of safety measures, and currently uses metal cap, paper, COBRA, and EOSS as seal devices. Unlike facilities that comply with safety measures requirements, such as domestic nuclear facilities, facilities subject to denuclearization are likely to have various risk environments that make it difficult to apply safety measures, and there is a high possibility that continuity of knowledge (COK) such as damage, malfunction, and power loss will not be maintained. This study aims to develop a real-time active seal device that can be applied in such special situations to enable immediate response in the event of a similar situation. To this end, the main functions of the real-time seal device were derived and applied, and a commercialized seal device and operation software. The real-time seal technology developed through this study can be applied to all nuclear facilities in South Korea, especially used as storage equipment for dry cask storage facilities of heavy water reactor's after fuel, and it is believed that unnecessary radiation exposure by inspectors can be minimized.