• Title/Summary/Keyword: Nuclear Agreement

Search Result 631, Processing Time 0.02 seconds

Thermal-hydraulic 0D/3D coupling in OpenFOAM: Validation and application in nuclear installations

  • Santiago F. Corzo ;Dario M. Godino ;Alirio J. Sarache Pina;Norberto M. Nigro ;Damian E. Ramajo
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1911-1923
    • /
    • 2023
  • The nuclear safety assessment involving large transient simulations is forcing the community to develop methods for coupling thermal-hydraulics and neutronic codes and three-dimensional (3D) Computational Fluid Dynamics (CFD) codes. In this paper a set of dynamic boundary conditions are implemented in OpenFOAM in order to apply zero-dimensional (0D) approaches coupling with 3D thermal-hydraulic simulation in a single framework. This boundary conditions are applied to model pipelines, tanks, pumps, and heat exchangers. On a first stage, four tests are perform in order to assess the implementations. The results are compared with experimental data, full 3D CFD, and system code simulations, finding a general good agreement. The semi-implicit implementation nature of these boundary conditions has shown robustness and accuracy for large time steps. Finally, an application case, consisting of a simplified open pool with a cooling external circuit is solved to remark the capability of the tool to simulate thermal hydraulic systems commonly found in nuclear installations.

CEFR control rod drop transient simulation using RAST-F code system

  • Tuan Quoc Tran;Xingkai Huo;Emil Fridman;Deokjung Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4491-4503
    • /
    • 2023
  • This study aimed to verify and validate the transient simulation capability of the hybrid code system RAST-F for fast reactor analysis. For this purpose, control rod (CR) drop experiments involving eight separate CRs and six CR groups in the China Experimental Fast Reactor (CEFR) start-up tests were utilized to simulate the CR drop transient. The RAST-F numerical solution, including the neutron population, time-dependent reactivity, and CR worth, was compared against the measurement values obtained from two out-of-core detectors. Moreover, the time-dependent reactivity and CR worth from RAST-F were verified against the results obtained by the Monte Carlo code Serpent using continuous energy nuclear data. A code-to-code comparison between Serpent and RAST-F showed good agreement in terms of time-dependent reactivity and CR worth. The discrepancy was less than 160 pcm for reactivity and less than 110 pcm for CR worth. RAST-F solution was almost identical to the measurement data in terms of neutron population and reactivity. All the calculated CR worth results agreed with experimental results within two standard deviations of experimental uncertainty for all CRs and CR groups. This work demonstrates that the RAST-F code system can be a potential tool for analyzing time-dependent phenomena in fast reactors.

Production cross sections of radionuclides in the proton induced reactions on natural iron with the proton energy of 57 MeV

  • Sung-Chul Yang;Sang Pil Yoon;Tae-Yung Song;Guinyun Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1796-1802
    • /
    • 2024
  • The production cross sections of 55,56,57Co, 52gFe, 52g,54Mn, 51Cr, and 48V from the natFe (p,x) reactions were measured using a proton energy of 57 MeV at the Korea Multi-purpose Accelerator Complex (KOMAC) in Gyeongju, Korea. The conventional stacked-foil activation method and offline γ-ray spectroscopy were used to determine the excitation functions of proton induced nuclear reactions on iron. The measured excitation functions were compared with experimental data in literature and theoretical data from the TENDL-2021 library. The present data show generally good agreement with other experimental data, but discrepancies were found between the present data and the excitation functions of the TENDL-2021 library in the investigated energy range, except for 56,57Co and 54Mn.

Comparison of Batch Assay and Random Assay Using Automatic Dispenser in Radioimmunoassay (핵의학 체외 검사에서 자동분주기를 이용한 Random Assay 가능성평가)

  • Moon, Seung-Hwan;Lee, Ho-Young;Shin, Sun-Young;Min, Gyeong-Sun;Lee, Hyun-Joo;Jang, Su-Jin;Kang, Ji-Yeon;Lee, Dong-Soo;Chung, June-Key;Lee, Myung-Chul
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.4
    • /
    • pp.323-329
    • /
    • 2009
  • Purpose: Radioimmunoassay (RIA) was usually performed by the batch assay. To improve the efficiency of RIA without increase of the cost and time, random assay could be a choice. We investigated the possibility of the random assay using automatic dispenser by assessing the agreement between batch assay and random assay. Materials and Methods: The experiments were performed with four items; Triiodothyronine (T3), free thyroxine (fT4), Prostate specific antigen (PSA), Carcinoembryonic antigen (CEA). In each item, the sera of twenty patients, the standard, and the control samples were used. The measurements were done 4 times with 3 hour time intervals by random assay and batch assay. The coefficient of variation (CV) of the standard samples and patients' data in T3, fT4, PSA, and CEA were assessed. ICC (Intraclass correlation coefficient) and coefficient of correlation were measured to assessing the agreement between two methods. Results: The CVs (%) of T3, fT4, PSA, and CEA measured by batch assay were 3.2$\pm$1.7%, 3.9$\pm$2.1%, 7.1$\pm$6.2%, 11.2$\pm$7.2%. The CVs by random assay were 2.1$\pm$1.7%, 4.8$\pm$3.1%, 3.6$\pm$4.8%, and 7.4$\pm$6.2%. The ICC between the batch assay and random assay were 0.9968 (T3), 0.9973 (fT4), 0.9996 (PSA), and 0.9901 (CEA). The coefficient of correlation between the batch assay and random assay were 0.9924(T3), 0.9974 (fT4), 0.9994 (PSA), and 0.9989 (CEA) (p<0.05). Conclusion: The results of random assay showed strong agreement with the batch assay in a day. These results suggest that random assay using automatic dispenser could be used in radioimmunoassay.

Verification of a novel fuel burnup algorithm in the RAPID code system based on Serpent-2 simulation of the TRIGA Mark II research reactor

  • Anze Pungercic;Valerio Mascolino ;Alireza Haghighat;Luka Snoj
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3732-3753
    • /
    • 2023
  • The Real-time Analysis for Particle-transport and In-situ Detection (RAPID) Code System, developed based on the Multi-stage Response-function Transport (MRT) methodology, enables real-time simulation of nuclear systems such as reactor cores, spent nuclear fuel pools and casks, and sub-critical facilities. This paper presents the application of a novel fission matrix-based burnup methodology to the well-characterized JSI TRIGA Mark II research reactor. This methodology allows for calculation of nuclear fuel depletion by combination and interpolation of RAPID's burnup dependent fission matrix (FM) coefficients to take into account core changes due to burnup. The methodology is compared to experimentally validated Serpent-2 Monte Carlo depletion calculations. The results show that the burnup methodology for RAPID (bRAPID) implemented into RAPID is capable of accurately calculating the keff burnup changes of the reactor core as the average discrepancies throughout the whole burnup interval are 37 pcm. Furthermore, capability of accurately describing 3D fission source distribution changes with burnup is demonstrated by having less than 1% relative discrepancies compared to Serpent-2. Good agreement is observed for axially and pin-wise dependent fuel burnup and nuclear fuel nuclide composition as a function of burnup. It is demonstrated that bRAPID accurately describes burnup in areas with high gradients of neutron flux (e.g. vicinity of control rods). Observed discrepancies for some isotopes are explained by analyzing the neutron spectrum. This paper presents a powerful depletion calculation tool that is capable of characterization of spent nuclear fuel on the fly while the reactor is in operation.

Document Management for Jordan Research and Training Reactor Project by ANSIM (원자력 통합안전경영시스템을 이용한 요르단연구로사업의 문서관리)

  • Park, Kook-Nam;Choi, Min-Ho;Kwon, Yongse
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.2
    • /
    • pp.113-118
    • /
    • 2016
  • Project management is a tool for smooth operation during a full cycle from the design to normal operation including the schedule, document, and budget management, and document management is an important work for big projects such as the JRTR (Jordan Research and Training Reactor). To manage the various large documents for a research reactor, a project management system was resolved, a project procedure manual was prepared, and a document control system was established. The ANSIM (Advanced Nuclear Safety Information Management) system consists of a document management folder, document container folder, project management folder, organization management folder, and EPC (Engineering, Procurement and Construction) document folder. First, the system composition is a computerized version of the Inter-office Correspondence (IOC), the Document Distribution for Agreement (DDA), Design Documents, and Project Manager Memorandum (PM Memo) works prepared for the research reactor design. Second, it reviews, distributes, and approves design documents in the system and approves those documents to register and supply them to the research reactor user. Third, it integrates the information of the document system-using organization and its members, as well as users' rights regarding the ANSIM document system. Throughout these functions, the ANSIM system has been contributing to the vitalization of united research. Not only did the ANSIM system realize a design document input, data load, and search system and manage KAERI's long-period experience and knowledge information properties using a management strategy, but in doing so, it also contributed to research activation and will actively help in the construction of other nuclear facilities and exports abroad.

Establishment of Document Control System for the Jordan Research and Training Reactor Project (요르단연구로건설사업 문서관리시스템 구축)

  • Park, Kook-Nam;Ko, Young-Cheol;Wu, Sang-Ik;Oh, Soo-Youl;Lee, Doo-Jeong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.34 no.4
    • /
    • pp.49-56
    • /
    • 2011
  • The Project of Jordan Research and Training Reactor (JRTR) officially launched in Aug. 2010. JRTR is the first made-in-Korea nuclear system to be built abroad by year 2015, and Korea Atomic Energy Research Institute (KAERI) is responsible for the design of major systems including the reactor core. While the PDCS (Project Document Control System) being operated by EPC company controls all the documents of the whole Project, KAERI is supposed to have its own system for KAERI documents. Meeting such a need; KAERI has implemented a document control for the JRTR Project into already existing ANSIM (KAERI Advanced Nuclear Safety Information Management) system. The documents of JRTR project to be controlled are defined in the PPM (Project Procedures Manual), QAP (Quality Assurance Procedure) and PEP (Project Execution Program). The ANSIM consists of the document management holder, document container holder and organization management holder. The document management holder, which is the most important part of ANSIM-JRTR, consists of the DDA (Document Distribution for Agreement), IOC (Inter-office Correspondence), PM Memo. (Project Manager Memorandum) and cover sheets of design documents. Other materials such as meeting minutes, sub-department materials and design information materials are stored in an independent COP (Community of Practice). This established computerized document control system, ANSIM, could lessen a burden for project management team and enhance the productivity as well.

Agreement of three commercial anti-extractable nuclear antigen tests: EUROASSAY Anti-ENA Profile, Polycheck Autoimmune Test and FIDIS Connective Profile

  • Kim, Namhee;Kim, In-Suk;Chang, Chulhun L;Kim, Hyung-Hoi;Lee, Eun Yup
    • Kosin Medical Journal
    • /
    • v.33 no.3
    • /
    • pp.307-317
    • /
    • 2018
  • Background: Detection of antibodies to extractable nuclear antigens (ENAs) is needed for the diagnosis in systemic autoimmune diseases. In this study, we compared three reagents using line immunoblot assay (LIA) or multiplex bead immunoassay for detecting the anti-ENAs. Methods: A total of 89 sera were tested by 3 different assays: EUROASSAY Anti-ENA Profile (Euroimmune, Germany), Polycheck Autoimmune Test (Biocheck GmbH, Germany), and $FIDIS^{TM}$ Connective Profile (Biomedical Diagnostics, France). The following individual ENAs were investigated: Sm, SS-A (Ro), SS-B (La), Scl-70, Jo-1 and RNP. We reviewed medical records to investigate the discrepant results among three methods. Results: Overall percent agreements were 96.1% between EUROASSAY Anti-ENA Profile and $FIDIS^{TM}$ Connective profile; 90.4% between EUROASSAY Anti-ENA Profile and Polycheck Autoimmune Test using the manufacturers' cutoff; 96.4% between EUROASSAY Anti-ENA Profile and Polycheck Autoimmune Test using a upward cutoff; 90.4% between $FIDIS^{TM}$ Connective profile and Polycheck Autoimmune Test the manufacturers' cutoff; and 96.4% between $FIDIS^{TM}$ Connective profile and Polycheck Autoimmune Test a upward cutoff. Conclusions: The three assays showed excellent agreement with each other. With appropriate cutoff, the all three assays for six of the anti-ENA tests investigated in this study can be used in clinical laboratories for detecting the anti-ENAs.

Implications of using a 50-μm-thick skin target layer in skin dose coefficient calculation for photons, protons, and helium ions

  • Yeom, Yeon Soo;Nguyen, Thang Tat;Choi, Chansoo;Han, Min Cheol;Lee, Hanjin;Han, Haegin;Kim, Chan Hyeong
    • Nuclear Engineering and Technology
    • /
    • v.49 no.7
    • /
    • pp.1495-1504
    • /
    • 2017
  • In a previous study, a set of polygon-mesh (PM)-based skin models including a $50-{\mu}m-thick$ radiosensitive target layer were constructed and used to calculate skin dose coefficients (DCs) for idealized external beams of electrons. The results showed that the calculated skin DCs were significantly different from the International Commission on Radiological Protection (ICRP) Publication 116 skin DCs calculated using voxel-type ICRP reference phantoms that do not include the thin target layer. The difference was as large as 7,700 times for electron energies less than 1 MeV, which raises a significant issue that should be addressed subsequently. In the present study, therefore, as an extension of the initial, previous study, skin DCs for three other particles (photons, protons, and helium ions) were calculated by using the PM-based skin models and the calculated values were compared with the ICRP-116 skin DCs. The analysis of our results showed that for the photon exposures, the calculated values were generally in good agreement with the ICRP-116 values. For the charged particles, by contrast, there was a significant difference between the PM-model-calculated skin DCs and the ICRP-116 values. Specifically, the ICRP-116 skin DCs were smaller than those calculated by the PM models-which is to say that they were under-estimated-by up to ~16 times for both protons and helium ions. These differences in skin dose also significantly affected the calculation of the effective dose (E) values, which is reasonable, considering that the skin dose is the major factor determining effective dose calculation for charged particles. The results of the current study generally show that the ICRP-116 DCs for skin dose and effective dose are not reliable for charged particles.

Conceptual design of a high neutron flux research reactor core with low enriched uranium fuel and low plutonium production

  • Rahimi, Ghasem;Nematollahi, MohammadReza;Hadad, Kamal;Rabiee, Ataollah
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.499-507
    • /
    • 2020
  • Research reactors for radioisotope production, fuel and material testing and research activities are designed, constructed and operated based on the society's needs. In this study, neutronic and thermal hydraulic design of a high neutron flux research reactor core for radioisotope production is presented. Main parameters including core excess reactivity, reactivity variations, power and flux distribution during the cycle, axial and radial power peaking factors (PPF), Pu239 production and minimum DNBR are calculated by nuclear deterministic codes. Core calculations performed by deterministic codes are validated with Monte Carlo code. Comparison of the neutronic parameters obtained from deterministic and Monte Carlo codes indicates good agreement. Finally, subchannel analysis performed for the hot channel to evaluate the maximum fuel and clad temperatures. The results show that the average thermal neutron flux at the beginning of cycle (BOC) is 1.0811 × 1014 n/㎠-s and at the end of cycle (EOC) is 1.229 × 1014 n/㎠-s. Total Plutonium (Pu239) production at the EOC evaluated to be 0.9487 Kg with 83.64% grade when LEU (UO2 with 3.7% enrichment) used as fuel. This designed reactor which uses LEU fuel and has high neutron flux and low plutonium production could be used for peaceful nuclear activities based on nuclear non-proliferation treaty concepts.