DOI QR코드

DOI QR Code

CEFR control rod drop transient simulation using RAST-F code system

  • Tuan Quoc Tran (Department of Nuclear Engineering, Ulsan National Institute of Science and Technology) ;
  • Xingkai Huo (China Institute of Atomic Energy) ;
  • Emil Fridman (Helmholtz-Zentrum Dresden-Rossendorf) ;
  • Deokjung Lee (Department of Nuclear Engineering, Ulsan National Institute of Science and Technology)
  • Received : 2023.05.05
  • Accepted : 2023.08.09
  • Published : 2023.12.25

Abstract

This study aimed to verify and validate the transient simulation capability of the hybrid code system RAST-F for fast reactor analysis. For this purpose, control rod (CR) drop experiments involving eight separate CRs and six CR groups in the China Experimental Fast Reactor (CEFR) start-up tests were utilized to simulate the CR drop transient. The RAST-F numerical solution, including the neutron population, time-dependent reactivity, and CR worth, was compared against the measurement values obtained from two out-of-core detectors. Moreover, the time-dependent reactivity and CR worth from RAST-F were verified against the results obtained by the Monte Carlo code Serpent using continuous energy nuclear data. A code-to-code comparison between Serpent and RAST-F showed good agreement in terms of time-dependent reactivity and CR worth. The discrepancy was less than 160 pcm for reactivity and less than 110 pcm for CR worth. RAST-F solution was almost identical to the measurement data in terms of neutron population and reactivity. All the calculated CR worth results agreed with experimental results within two standard deviations of experimental uncertainty for all CRs and CR groups. This work demonstrates that the RAST-F code system can be a potential tool for analyzing time-dependent phenomena in fast reactors.

Keywords

Acknowledgement

This work was partially supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT). (No. NRF-2019M2D2A1A03058371). This research was partially supported by the project (L20S089000) by Korea Hydro & Nuclear Power Co. Ltd. This work was partially supported by Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government (MOTIE) [RS-2023-00241302]. The data and information presented in the paper are part of an ongoing IAEA coordinated research project on "Neutronics Benchmark of CEFR Start-Up Tests - CRP-I31032".

References

  1. X. Huo, et al., Technical Specifications for Neutronics Benchmark of CEFR Start-Up Tests, China Institute of Atomic Energy, 2019. IAEA CRP-I31032. 
  2. S. Choi, et al., Development of high-Fidelity neutron transport code STREAM, Comput. Phys. Commun. 264 (2021), 107915. 
  3. J. Jang, S. Dzianisau, D. Lee, Development of nodal diffusion code RAST-V for vodo-vodyanoi Energetichesky reactor analysis, Nucl. Eng. Technol. 54 (2022) 3494-3515. 
  4. J. Jang, et al., Analysis of rostov-II benchmark using conventional two-step code systems, Energies 15 (2022) 3318. 
  5. T.Q. Tran, A. Cherezov, X. Du, D. Lee, Verification of a two-step code system MCS/RAST-F to fast reactor core analysis, Nucl. Eng. Technol. 54 (2022) 1789-1803. 
  6. T.D.C. Nguyen, H. Lee, D. Lee, Use of Monte Carlo code MCS for multigroup cross section generation for fast reactor analysis, Nucl. Eng. Technol. 53 (2021) 2788-2802. 
  7. J.Y. Cho, C.H. Kim, Higher order polynomial expansion nodal method for hexagonal core neutronics analysis, Ann. Nucl. Eng. 25 (1998) 1021-1031. 
  8. J.Y. Cho, et al., Hexagonal CMFD formulation employing triangle-based polynomial expansion nodal kernel, in: International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C), 2001. Salt Lake City, Utah, USA, September 9. 
  9. M. Pusa, Rational approximations to the matrix exponential in burnup calculations, Nucl. Sci. Eng. 169 (2011) 155-167. 
  10. T.Q. Tran, A. Cherezov, X. Du, J. Park, D. Lee, Development of hexagonal-Z geometry capability in RAST-K for fast reactor analysis, in: International Conference on Emerging Nuclear Energy Systems (ICENES), 2019. Bali, Indonesia, October 6-9. 
  11. T.Q. Tran, S. Dzianisau, T.D.C. Nguyen, D. Lee, Verification of a depletion solver in RAST-K for fast reactor analysis, in: Korean Nuclear Society Virtual Autumn Meeting, 2020. R. Korea, Dec 16-18. 
  12. T.Q. Tran, T.D.C. Nguyen, D. Lee, CEFR simulation using diffusion code system RAST-F, in: International Conference on Physics of Reactors (PHYSOR), 2022. Pittsburgh, USA, May 15-20. 
  13. T.Q. Tran, D. Lee, Neutronic simulation of the CEFR experiments with the nodal diffusion code system RAST-F, Nucl. Eng. Technol. 54 (2022) 2635-2649. 
  14. J. Yasinsky, A. Henry, Some numerical experiments concerning space-time reactor kinetics behavior, Nucl. Sci. Eng. 22 (1965) 171-181. 
  15. J.P. Hamric, Spatial kinetics in large reactors, Trans. Am. Nucl. Soc. 8 (1965). 
  16. Y. Chao, A. Attard, A resolution to the stiffness problem of reactor kinetics, Nucl. Sci. Eng. 90 (1985) 40-46. 
  17. J. Sanchez, On the numerical solution of the point kinetics equations by generalized Runge-Kutta methods, Nucl. Sci. Eng. 103 (1989) 94-99. 
  18. D.A. Meneley, K. Ott, E.S. Wiener, Space-Time Kinetics-The QX-1 Code, Argonne National Laboratory, 1968. ANL-7310. 
  19. D.A. Meneley, K. Ott, E.S. Wiener, Fast Reactor Kinetics-The QX-1 Code, Argonne National Laboratory, 1971. ANL-7769. 
  20. S.K. Chae, Review of computational methods for space-time reactor kinetics, J. Korean Nucl. Soc. 11 (1979) 219-229. 
  21. T.M. Sutton, B.N. Aviles, Diffusion theory methods for spatial kinetics calculations, Prog. Nucl. Eng. 30 (1996) 119-182. 
  22. T. Downar, et al., PARCS v3.0 U.S. NRC Core Neutronics Simulator Theory Manual, University of Michigan, USA, 2010. 
  23. Y.A. Chao, Coarse mesh finite difference methods and applications, in: International Conference on Physics of Reactors, PHYSOR), Pittsburgh, Pennsylvania, USA, 2000. May 7-12. 
  24. E. Fridman, X. Huo, Dynamic simulation of the CEFR control rod drop experiments with the Monte Carlo code Serpent, Ann. Nucl. Eng. 148 (2020), 107707. 
  25. I. Pataki, et al., Validation of the KIKO3DMG neutronics code on the CEFR start-up tests, Ann. Nucl. Eng. 180 (2023), 109493. 
  26. J. Leppanen, M. Pusa, T. Viitanen, V. Valtavirta, T. Kaltiaisenaho, The Serpent Monte Carlo code: status, development and applications in 2013, Ann. Nucl. Eng. 82 (2015) 142-150. 
  27. X. Du, J. Choe, T.Q. Tuan, D. Lee, Neutronic simulation of China Experimental Fast Reactor start-up tests. Part I: SARAX code deterministic calculation, Ann. Nucl. Eng. 136 (2020), 107046. 
  28. T.Q. Tran, J. Choe, X. Du, H. Lee, D. Lee, Neutronic simulation of China experimental fast reactor start-up tests part II: MCS code Monte Carlo calculation, Ann. Nucl. Eng. 148 (2020), 107710. 
  29. Y. Hu, Y. Zhao, X. Chen, L. Xu, Proposing of a new fitting and iteration method (FIM) to correct measured reactor core reactivity, Nucl. Eng. Des. 254 (2013) 33-42. 
  30. A.F. Henry, A.V. Vota, WIGL2-A Program for the Solution of the One-Dimensional, Two-Group, Space-Time Diffusion Equations Accounting for Temperature, Xenon, and Control Feedback, Bettis Atomic Power Lab., 1965. WAPD-TM-532. 
  31. J.B. Yasinsky, M. Natelson, L.A. Hageman, TWIGL-A Program to Solve the Two-Dimensional, Two-Group, Space-Time Neutron Diffusion Equations with Temperature Feedback, Bettis Atomic Power Lab., 1968. WAPD-TM-743. 
  32. W.M. Stacey, Space-time Nuclear Reactor Kinetics, Academic Press, New York, 1969. 
  33. K.F. Hansen, et al., GAKIN: a One Dimensional Multigroup Kinetics Code, Calif. General Atomic Div., 1967. GA-7543. 
  34. W.T. McCormick Jr., K.F. Hansen, Numerical Solution of the Two-Dimensional Time-dependent Multigroup Equations, Massachusetts Institute of Technology, 1969. MIT-3903-1. 
  35. K.F. Hansen, J.H. Mason, GAKIN II : a One-Dimensional Multigroup Diffusion Theory Reactor Kinetics Code, Massachusetts Institute of Technology, 1973. COO2262-3. 
  36. A.L. Wight, K.F. Hansen, D.R. Ferguson, Application on alternating-direction implicit methods to the space-dependent kinetics equations, Nucl. Sci. Eng. 44 (1971) 239-251. 
  37. M.B. Chadwick, et al., ENDF/B-VII.1 nuclear data for science and Technology: cross sections, covariances, fission product yields and decay data, Nucl. Data Sheets 112 (2011) 2887-2996. 
  38. E. Fridman, E. Shwageraus, Modeling of SFR cores with serpent-DYN3D codes sequence, Ann. Nucl. Eng. 53 (2013) 354-363. 
  39. A. Kavenoky, The SPH homogenization method, in: Specialists' Meeting on Homogenization Methods in Reactor Physics, Lugano, Switzerland, 1978. November 13-15.