DOI QR코드

DOI QR Code

Failure analysis of prestressed concrete containment vessels under internal pressure considering thermomechanical coupling

  • Yu-Xiao Wu (Key Laboratory of Concrete and Prestressed Concrete Structures of the Ministry of Education, Southeast University) ;
  • Zi-Jian Fei (Key Laboratory of Concrete and Prestressed Concrete Structures of the Ministry of Education, Southeast University) ;
  • De-Cheng Feng (Key Laboratory of Concrete and Prestressed Concrete Structures of the Ministry of Education, Southeast University) ;
  • Meng-Yan Song (China Nuclear Power Engineering Co., Ltd)
  • Received : 2023.04.30
  • Accepted : 2023.08.12
  • Published : 2023.12.25

Abstract

After a loss of coolant accident (LOCA) in the prestressed concrete containment vessels (PCCVs) of nuclear power plants, the coupling of temperature and pressure can significantly affect the mechanical properties of the PCCVs. However, there is no consensus on how this coupling affects the failure mechanism of PCCVs. In this paper, a simplified finite element modeling method is proposed to study the effect of temperature and pressure coupling on PCCVs. The experiment results of a 1:4 scale PCCV model tested at Sandia National Laboratory (SNL) are compared with the results obtained from the proposed modeling approach. Seven working conditions are set up by varying the internal and external temperatures to investigate the failure mechanism of the PCCV model under the coupling effect of temperature and pressure. The results of this paper demonstrate that the finite element model established by the simplified finite element method proposed in this paper is highly consistent with the experimental results. Furthermore, the stress-displacement curve of the PCCV during loading can be divided into four stages, each of which corresponds to the damage to the concrete, steel liner, steel rebar, and prestressing tendon. Finally, the failure mechanism of the PCCV is significantly affected by temperature.

Keywords

Acknowledgement

The authors greatly appreciate the financial support from the Project of National Key Research and Development Program of China (Grant No. 2022YFC3803004), the Natural Science Foundation of Jiangsu Province (Grant No. BK20211564), and the National Natural Science Foundation of China (Grant No. 52078119).

References

  1. J. Cobb, Highlights of the world nuclear performance report 2020[J], ATW - Int. J. Nucl. Power 65 (11-12) (2020) 551-554.
  2. H.G. Kwak, J.H. Kim, Numerical models for prestressing tendons in containment structures[J], Nucl. Eng. Des. 236 (10) (2006) 1061-1080.
  3. K. Donten, M. Knauff, A. Sadowski, et al., Tests on model of prestressed reactor containment[J], Archiwum Inzynierii Ladowej 26 (1) (1980) 231-245.
  4. Horschel, Experimental Results from Pressure Testing a 1:6-scale Nuclear Power Plant containment[J], Sandia National Laboratories, 1992.
  5. M.F. Hessheimer, S. Shibata, J.F. Costello, Functional and Structural Failure Mode Overpressurization Tests of 1: 4-Scale Prestressed Concrete Containment Vessel Model, 2003. H372)[J].
  6. S. Kevorkian, G. Heinfling, A. Courtois, Prediction of a Containment Vessel MockUp Cracking during over Design Pressure test[J], 2005.
  7. S. Jim'enez, A. Cornejo, L.G. Barbu, et al., Analysis of the mock-up of a reactor containment building: comparison with experimental results[J], Nucl. Eng. Des. 359 (2020), 110454.
  8. L. Charpin, J. Niepceron, M. Corbin, et al., Ageing and Air Leakage Assessment of a Nuclear Reactor Containment Mock-Up: VERCORS 2nd benchmark[J], NUCLEAR ENGINEERING AND DESIGN, 2021, p. 377.
  9. Y.P. Liang, X.D. Ren, D.C. Feng, Probabilistic safety assessment of nuclear containment vessel under internal pressure considering spatial variability of material properties[J], Int. J. Pres. Ves. Pip. (2022) 200.
  10. M. Manjuprasad, S. Gopalakrishnan, T. Rao, Non-linear dynamic response of a reinforced concrete secondary containment shell subjected to seismic load[J, Eng. Struct. 23 (5) (2001) 397-406.
  11. Y.S. Choun, J. Park, Evaluation of seismic shear capacity of prestressed concrete containment vessels with fiber reinforcement[j], Nucl. Eng. Technol. 47 (6) (2015) 756-765.
  12. Y.S. Choun, H.K. Park, Containment performance evaluation of prestressed concrete containment vessels with fiber reinforcement[j], Nucl. Eng. Technol. 47 (7) (2015) 884-894.
  13. Z. Zheng, Y. Sun, X.L. Pan, et al., The optimum steel fiber reinforcement for prestressed concrete containment under internal pressure[J], Nucl. Eng. Technol. 54 (6) (2022) 2156-2172.
  14. T. de Larrard, J.B. Colliat, F. Benboudjema, et al., Effect of the Young modulus variability on the mechanical behaviour of a nuclear containment vessel[J], Nucl. Eng. Des. 240 (12) (2010) 4051-4060.
  15. G. Doughty, D. Shepherd, N. Prinja, et al., International Standard Problem No. 48- containment Capacity, 2005. Synthesis Report[J].
  16. L. Tong, X. Zhou, X. Cao, Ultimate pressure bearing capacity analysis for the prestressed concrete containment[J], Ann. Nucl. Energy 121 (2018) 582-593.
  17. T.F. Kanzleiter, Experimental investigations of pressure and temperature loads on a containment after a loss-of-coolant accident[j], Nucl. Eng. Des. 38 (1) (1976) 159-167.
  18. S.H. Noh, I.H. Moon, J.B. Lee, et al., Analysis of prestressed concrete containment vessel (PCCV) under severe accident loading[J], Nucl. Eng. Technol. 40 (1) (2008) 77-86.
  19. Z. Zhou, C. Wu, S.P. Meng, et al., Mechanical analysis for prestressed concrete containment vessels under loss of coolant accident[J], Comput. Concr. 14 (2) (2014) 127-143.
  20. Z.F. Wang, J.C. Yan, Y.Z. Lin, et al., Study on failure mechanism of prestressed concrete containments following a loss of coolant accident, J]. ENGINEERING STRUCTURES (2020) 202.
  21. Z. Zheng, Y. Wang, S. Huang, et al., Investigation on damage assessment of fiber-reinforced prestressed concrete containment under temperature and subsequent internal pressure[J], Nucl. Eng. Technol. 55 (6) (2023) 2053-2068.
  22. Q.Y. Yang, J.C. Yan, F. Fan, Pretest analysis of a prestressed concrete containment 1:3.2 scale model under thermal-pressure coupling conditions[J], Nucl. Eng. Technol. 55 (6) (2023) 2069-2087.
  23. S. Jin, Z.C. Li, T.Y. Lan, et al., Nonlinear finite element analysis of prestressed concrete containment vessel under severe accident loads[J], KSCE J. Civ. Eng. 24 (3) (2020) 816-825.
  24. M.K. Chakraborty, S. Acharya, A.S. Pisharady, et al., Assessment of Ultimate Load Capacity of concrete containment structures against structural collapse[J], Nucl. Eng. Des. 323 (2017) 417-426.
  25. D.C. Feng, X.D. Ren, J. Li, Softened damage-plasticity model for analysis of cracked reinforced concrete structures[J], J. Struct. Eng. 144 (6) (2018).
  26. D.C. Feng, X.D. Ren, J. Li, Cyclic behavior modeling of reinforced concrete shear walls based on softened damage-plasticity model[J], Eng. Struct. 166 (2018) 363-375.
  27. D.C. Feng, G. Wu, Y. Lu, Finite element modelling approach for precast reinforced concrete beam-to-column connections under cyclic loading[J], Eng. Struct. 174 (2018) 49-66.
  28. A. Saritas, F.C. Filippou, Analysis of RC walls with a mixed formulation frame finite element[J], Comput. Concr. 12 (4) (2013) 519-536.
  29. J. Li, X.D. Ren, Stochastic damage model for concrete based on energy equivalent strain[J], Int. J. Solid Struct. 46 (11-12) (2009) 2407-2419.
  30. X.D. Ren, S.J. Zeng, J. Li, A rate-dependent stochastic damage-plasticity model for quasi-brittle materials[J], Comput. Mech. 55 (2) (2015) 267-285.
  31. D.C. Feng, J. Li, Stochastic nonlinear behavior of reinforced concrete frames. II: numerical simulation[J], J. Struct. Eng. 142 (3) (2016).
  32. Y.P. Liang, D.C. Feng, X.D. Ren, High-fidelity numerical analysis of the damage and failure mechanisms of a prestressed concrete containment vessel under internal pressure[J], Nucl. Eng. Des. (2021) 383.
  33. J.Y. Wu, J. Li, R. Faria, An energy release rate-based plastic-damage model for concrete[J], Int. J. Solid Struct. 43 (3-4) (2006) 583-612.
  34. J.Y. Wu, J. Li, Unified plastic-damage model for concrete and its applications to dynamic nonlinear analysis of structures[J], Struct. Eng. Mech. 25 (5) (2007) 519-540.
  35. T.T. Hsu, Softened truss model theory for shear and torsion[J], Structural Journal 85 (6) (1988) 624-635.
  36. J.Y. Wu, Damage Energy Release Rate-Based Elastoplastic Damage Constitutive Model for Concrete and its Application to Nonlinear Analysis of structures[J], Department of Building Engineering, Tongji University, Shanghai, China, 2004.
  37. D.C. Feng, C. Kolay, J.M. Ricles, et al., Collapse simulation of reinforced concrete frame structures[J], Struct. Des. Tall Special Build. 25 (12) (2016) 578-601.
  38. D.C. Feng, X.D. Ren, J. Li, Stochastic damage hysteretic model for concrete based on micromechanical approach[J], Int. J. Non Lin. Mech. 83 (2016) 15-25.
  39. J.Z. Xiao, J. Li, Z.P. Sun, Review of studies on the fire-resistance behaviour of HPC structures[J], Ind. Constr. 31 (2001) 53-56.
  40. Y. Jihong, THE EFFECTS OF HIGH TEMPERATURE ON COMPRESSIVE STRENGTH OF CONCRETE[J], 2002.
  41. B. Wu, Z.C. Ma, J.P. Ou, Experimental research on deformation and constitutive relationship of concrete under axial loading and high temperature[J], J. Build. Struct. 20 (5) (1999) 42-49.
  42. S.M. Alogla, V. Kodur, Temperature-induced transient creep strain in fiber-reinforced concrete[J], Cement Concr. Compos. 113 (2020), 103719.
  43. M. Menegotto, Method of Analysis for Cyclically Loaded RC Plane Frames Including Changes in Geometry and Non-elastic Behavior of Elements under Combined Normal Force and bending[C], 1973.
  44. S. Limkatanyu, E. Spacone, Nonlinear Analysis of Reinforced Concrete Frames Including Bond-Slip effects[C], 2008.
  45. H.G. Kwak, Y. Kwon, Nonlinear analysis of containment structure based on modified tendon model[J], Ann. Nucl. Energy 92 (2016) 113-126.
  46. J.Y. Wu, D.D. Hao, W.S. Li, et al., Numerical modeling and simulation of a prestressed concrete containment vessel[J], Ann. Nucl. Energy 121 (2018) 269-283.
  47. X.D. Ren, Y.P. Liang, D.C. Feng, Fragility analysis of a prestressed concrete containment vessel subjected to internal pressure via the probability density evolution method[J], Nucl. Eng. Des. (2022) 390.
  48. Z. Zheng, C.Y. Su, X.L. Pan, et al., Damage performance analysis of prestressed concrete containments following a loss of coolant accident considering different external temperatures[J], Ann. Nucl. Energy (2023) 181.