• Title/Summary/Keyword: Nozzle ratio

Search Result 748, Processing Time 0.027 seconds

A Study on Aerodynamic Characteristics with the Supersonic Nozzle Quantity (초음속노즐 수량 변화에 따른 공기역학적 특성의 연구)

  • Lee, Jong-Hoon;Kim, Kyoung-Ryun;Park, Jong-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.5
    • /
    • pp.54-58
    • /
    • 2015
  • The objective of this paper is to investigate the flow characteristics of the multi nozzle. The configurations of the single, the 3- and the 6-nozzle were selected under Mach number of 2.5. Under-expanded pressure ratio such as 1.2, 1.6 and 2.0 were selected to elucidate interference of the free jet. The flow visualization was carried out with the Schlieren system and a supersonic cold-flow system. Also, the flow characteristics were studied computationally with the density measurements. Reasonable agreement between experimental and theoric equation has been achieved qualitatively.

A Study on the Characteristics of Spray of Swirl Nozzle for Desel Engine Injector(I) (디젤기관용 와류분사 밸브의 분무특성에 관한 연구 (1) (대기압하의 분사))

  • 안수길;노철승;박상길
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.88-97
    • /
    • 1984
  • The combustion process and the performance of a diesel engine are considerably affected by the characteristics of fuel spray. It is known that the spray of swirl nozzle for diesel engine injector of small orifice ratio becomes soft spray that has no core, therefore its penetration, one of the characteristics of spray becomes werse inspite of its good dispersion. In this paper, the spray characteristics of variously designed swirl nozzle for diesel injector were investigated by the photographic method. The nozzles, used in this experiment, vary in the diameter of swirl chambers and orifice ratio. From the results of the study, the sprays of this type nozzle of optimum swirl chamber and orifice ratio show that penetration decreased slightly but dispersion and spray volume increased remarcably, compared with unswirled single hole nozzle of the same size. It was suggested as a reason for the results, that the spray of this type swirl nozzle is similar to hard spray, therefore the core of the spray sustains good penetration considerably.

  • PDF

A Study of Thrust-Vectoring Nozzle Flow Using Coflow-Counterflow Concept (Coflow-Counterflow 개념을 이용한 추력벡터 노즐에서 발생하는 유동특성에 관한 연구)

  • Jung, Sung-Jae;Sanalkumar, V.R.;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.592-597
    • /
    • 2003
  • Thrust vector control using a coflow-counterflow concept is achieved by suction and blowing through a slot adjacent to a primary jet which is shrouded by a suction collar. In the present study, the flow characteristics of thrust vectoring is investigated using a numerical method. The nozzle has a design Mach number of 2.0, and the operation pressure ratio is varied to obtain various flow features of the nozzle flow. Test conditions are in the range of the nozzle pressure ratio from 6.0 to 10.0, and a suction pressure from 90kPa to 35kPa. Two-dimensional, compressible Navier-Stokes computations are conducted with RNG ${\kappa}-{\varepsilon}$ turbulence model. The computational results provide an understanding of the detailed physics of the thrust vectoring process. It is found that an increase in the nozzle pressure ratio leads to increased thrust efficiency but reduces the thrust vector angle.

  • PDF

An Experimental Study on Flow in the Nozzle of a Radial Turbine (구심터빈의 노즐 내부 유동에 대한 시험 연구)

  • Kang, Jeong-Seek;Lim, Byeung-Jun;Ahn, Iee-Ki
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.1
    • /
    • pp.35-41
    • /
    • 2010
  • Experimental study on the flow field inside the nozzle for radial turbine was performed. At design point, the pressure is high and the Mach number is low at the pressure side of the nozzle inlet semi-vaneless space as the flow turns through the nozzle vanes. As the flow accelerates through the nozzle passage to the throat the pressure level at the pressure and suction sides becomes similar. The flow continued accelerating from the throat to the inlet of turbine wheel and the pressure field became uniform in the circumferential direction in the vaneless space. In high expansion ratio condition, strong favorable pressure gradient band region occurred just after the throat in the semi-vaneless space in the circumferential direction and the pressure became uniform in the circumferential direction after this band. In low expansion ratio condition, core flow acceleration is dominant after the throat and this non-uniform pressure field reached to the inlet of turbine wheel.

Flow Characteristics of 2 Dimensional Supersonic Nozzle in Overexpanded Conditions (2차원 초음속 노즐의 과대팽창 유동 특성)

  • 김성돈;정인석;최정열
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.2
    • /
    • pp.1-7
    • /
    • 2002
  • In the modern propulsion systems, requited thrust is obtained using a nozzle. Sometimes shock and induced boundary layer separation is generated in an over-expanded convergent-divergent supersonic nozzle. It occurs because the nozzle expansion ratio is too large for a given nozzle pressure ratio (NPR). This phenomenon can be explained that it redefines effective nozzle geometry, shorer nozzle geometry and lower pressure ratio, in a given pressure ratio. Numerical studies were conducted about a fixed geometry 2D nozzle in overexpanded condition and compared with Hunter's experimental result. For the numerical simulation of the supersonic nozzle, Navier-Stokes equations are considered and as a turbulent model, $\kappa$-$\varepsilon$ /$\kappa$-$\omega$ blended SST two equation turbulent model is used. The characteristics of $\lambda$-shape shock systems due to the interaction of shock and boundary layer was investigated in a low NPR. And the result of comparison of thrust value shows that a fixed geometry nozzle can cover required flight mission.

An Experimental Study on Decrease of Noise for Air Nozzle (에어노즐의 소음저감 대책에 관한 연구)

  • Jeon, Seoung-Tae;Kim, Jong-Hyun;Lee, Keun-Oh
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.4
    • /
    • pp.51-56
    • /
    • 2003
  • The goal of this study is to show the way to decrease the noise from air nozzles. The variables of this test are the shapes of air nozzles, air flow rate and the distance between a reflection plate and a nozzle tip. This experiment is aimed to find the most appropriate condition to minimize the noise. These are the results. If diameter ratio is more than 12:8, noise level increases by over 10 dB(A) regradless of the distance between a reflection plate and a nozzle and the existence of a reflection plate. And when $L_2$ of a nozzle is 5mm long, noise level rise relatively highly. So, it is strongly recommended that $L_2$ should be manufactured more than 10mm. The reason for a high intensity noise is that when diameter ratio is more than 12:8, the diameter of a nozzle tip($D_2$) turns small drastically, which increases the air velocity. It is assumed that when the vortes is great around the spots where a nozzle hole is suddenly smaller, great turbulent flow increases much noise.

Flow Characteristics of Central-Driven Ejector with Design Parameters (중앙구동 이젝터의 설계변수에 따른 유동특성)

  • Park, Sang Kyoo;Yang, Hei Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.8
    • /
    • pp.645-651
    • /
    • 2015
  • The objective of this study is to experimentally investigate the effect of design parameter on the mass ratio of a central-driven ejector. The design parameters are the primary nozzle area and distance ratios, diffuser exit-area ratio and mixing-tube length ratio. The experimental setup was an open-loop continuous circulation system which has a movable nozzle ejector, an electric motor-pump, a water tank, a control panel and high-speed camera unit. We calculated the mass ratio using the measured primary and suction-flow rates with the experimental parameter of primary water-flow rate or pressure. The results showed that the mass ratio increased with the primary nozzle distance ratio and mixing tube length ratio, while the mass ratio decreased with the primary nozzle-area ratio and diffuser exit-area ratio.

Effect of Nozzle Cap Geometry for Swirl-Type Two-Fluid Nozzle on the Spray Characteristics (선회형 이유체노즐의 노즐캡 형상에 따른 분무특성)

  • Choi, Y.J.;Kang, S.M.;Kim, D.J.;Lee, J.K.
    • Journal of ILASS-Korea
    • /
    • v.13 no.3
    • /
    • pp.134-142
    • /
    • 2008
  • In the case of heavy duty diesel engines, the Urea-SCR system is currently considered to reduce the NOx emission as a proved technology, and it is widely studied to get the high performance and durability. However, the nozzles to inject the urea-water solution into the exhaust pipe occur some problems, including the nozzle clogging, deposition of urea-water solution on the inner wall of the exhaust pipe, resulting in the production of urea salt. In this study, a swirl-type twin-fluid nozzle to produce more fine droplets was used as a method to solve the problems. The effect of the nozzle cap geometry, including the length to diameter ratio ($l_o/d_o$) and chamfer, on the spray characteristics were investigated experimentally. The length to diameter ratio of nozzle cap were varied from 0.25 to 1.125. The chamfer angle of the nozzle cap was constant at 90o. The mean velocity and droplet size distributions of the spray were measured using a 2-D PDA (phase Doppler analyzer) system, and the spray half-width, AMD (arithmetic mean diameter) and SMD (Sauter mean diameter) were analyzed. At result, The larger length to diameter ratio of nozzle cap were more small SMD and AMD. The effect of the chamfer did increase the radial velocity, while it did not affect the atomization effect.

  • PDF

Characteristics of the Internal Flow in the Scaled-Up Fuel Nozzle (연료 노즐을 확대한 모형노즐에서의 내부유동 특성)

  • 박장혁;홍성태;구자예
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.3
    • /
    • pp.199-210
    • /
    • 1996
  • The measurements of velocities of internal flow in a scaled-up nozzle were made by laser Doppler velocimetry in order to clarify the effect of internal flow on the characteristics of fuel spray. The investigated length to diameter ratio(L/d) of the orifice were 1, 3, 4, 5 and 8, and inlet radius to diameter ratio(r0/d) were 0 and 0.5. Mean and fluctuating velocities and discharge coefficients were obtained at various Reynolds number ranging between 15,000 and 28,000, and L/d ranging between 1 and 8 in sharp and round inlet nozzle. The turbulent intensity and turbulent kinetic energy at exit in a sharp inlet nozzle were higher than that in a round inlet nozzle. For sharp inlet nozzle, fluctuating velocities near exit were decreased with increasing L/d.

  • PDF

Prediction of Critical Reynolds Number in Stability Curve of Liquid Jet ( I )

  • No, S.Y.;Ryu, K.Y.;Rhim, J.H.;Lim, S.B.
    • Journal of ILASS-Korea
    • /
    • v.4 no.1
    • /
    • pp.55-61
    • /
    • 1999
  • The first maximum point in the stability curve of liquid jet, i.e., the critical point is associated with the critical Reynolds number. This critical Reynolds number should be predicted by simple means. In this work, the critical Reynolds number in the stability curve of liquid jet are predicted using the empirical correlations and the experimental data reported in the literatures. The critical Reynolds number was found to be a function of the Ohnesorge number, nozzle lengh-to-diameter ratio, ambient Weber number and nozzle inlet type. An empirical correlation for the critical Reynolds number as a function of the Ohnesorge number and nozzle length-to-diameter ratio is newly proposed here. Although an empirical correlation proposed in this work may not be universal because of excluding the effects of ambient pressure and nozzle inlet type, it has reasonably agrees with the measured critical Reynolds number.

  • PDF