• 제목/요약/키워드: Nozzle Diameter

검색결과 703건 처리시간 0.021초

제한공간에서 비예혼합 난류제트 화염의 부상특성 (Characteristics of Lifted Flames in Nonpremixed Turbulent Confined Jets)

  • 차민석;정석호
    • 한국연소학회지
    • /
    • 제1권1호
    • /
    • pp.41-49
    • /
    • 1996
  • Effects of ambient geometry on the liftoff characteristics are experimentally studied for nonpremixed turbulent jet flames. To clarify the inconsistency of the nozzle diameter effect on the liftoff height, the ambiences of finite and infinite domains are studied. For nonpremixed turbulent jet issuing from a straight nozzle to infinite domain, flame liftoff height increases linearly with nozzle exit mean velocity and is independent of nozzle diameter. With the circular plate installed on the upstream of nozzle exit, flame liftoff height is lower with plate at jet exit than without, but flame liftoff characteristics are similar to the case of infinite domain. For the confined jet having axisymmetric wall boundary, the ratio of the liftoff height and nozzle diameter is proportional to the nozzle exit mean velocity demonstrating the effect of the nozzle diameter on the liftoff height. The liftoff height increases with decreasing outer axisymmetric wall diameter. At blowout conditions, the blowout velocity decreases with decreasing outer axisymmetric wall diameter and liftoff heights at blowout are approximately 50 times of nozzle diameter.

  • PDF

폴리에스테르 인터레이싱 텍스쳐가공 공정에서 가공사의 강신도와 인터레이싱 수의 변화 (I) -노즐의 지름과 텐션 링의 영향- (The Changes of the Textured Yam Physical Properties in Polyester Interlacing Texturing Process (I) -The Effect of Nozzle Diameter and Tension Ring-)

  • 이춘길;오봉효
    • 한국의류산업학회지
    • /
    • 제1권2호
    • /
    • pp.166-172
    • /
    • 1999
  • An experimental investigation has done for studying the changes of physical properties of the air-jet textured polyester yarn. Through the experiments of polyester 85/72 drawn yarn and 50/36 partially oriented yarn doubling' the following results are obtained. The tenacity of textured yarn decreased as the number of tension rings increased when the nozzle diameter was 1.2 mm. In the case when the tension ring was not used during the texturing process, the tenacity of textured yarn decreased as the nozzle diameter increased. But this tendency changed according to the number of tension rings used, the diameter of the nozzle, and yarn take-up speed. Breaking elongation decreased as the number of tension rings increased from one to four and the take-up speed increased at diameter 1.2 mm of the nozzle. The higher the diameter of the the nozzle the higher the breaking elongation until 1.4 mm. The number of interlacing went down as the diameter of the nozzle increased and the take-up speed of the yarn increased. The higher the number of tension rings, the lower the number of interlacing.

  • PDF

완전 발달된 원형 충돌제트의 노즐 직경이 열전달에 미치는 영향 (The Effect of Nozzle Diameter on Heat Transfer to a Fully Developed Round Impinging Jet)

  • 이대희;원세열;이영민;조헌노
    • 대한기계학회논문집B
    • /
    • 제24권4호
    • /
    • pp.519-525
    • /
    • 2000
  • The effect of nozzle diameter on the local Nusselt number distributions has been investigated for an axisymmetric turbulent jet impinging on the flat plate surface. The flow at the nozzle exit has a fully developed velocity profile. A uniform heat flux boundary condition at the plate surface was created using gold film Intrex. Liquid Crystal was used to measure the plate surface temperature. The experiments were made for the jet Reynolds number (Re) 23,000, the dimensionless nozzle to surface distance (L/d) from 2 to 14, and the nozzle diameter (d) from 1.36 to 3.40 cm. The results show that the Nusselt number at and near the stagnation point increase with an increasing value of the nozzle diameter.

ATY 노즐 직경에 따른 방호의류용 아라미드와 아라미드/나일론 하이브리드 ATY사의 물성변화 (Physical Properties of Aramid and Aramid/Nylon Hybrid ATY for Protective Garments relative to ATY Nozzle Diameter)

  • 최라희;김현아;김승진
    • 한국의류산업학회지
    • /
    • 제15권3호
    • /
    • pp.437-443
    • /
    • 2013
  • This paper investigates the physical properties of aramid and aramid/nylon hybrid air jet textured filaments for protective garments relative to ATY nozzle diameters. Three types of para-aramids(840d, 1,000d, 1,500d) and nylon(420d) filaments were prepared; in addition, 840d aramid/420d nylon and three kinds of aramid filaments were texturized with a variation of air jet nozzle diameters(0.6, 0.75, 1 and 1.2 mm) on the AIKI air jet texturing machine. The measured physical properties of 16 specimens are as follows. The linear densities of aramid and aramid/nylon hybrid ATY increased with a larger nozzle diameter. The tenacity and initial modulus of aramid and hybrid ATY linearly decreased with a larger nozzle diameter; in addition, the breaking strain increased with the nozzle diameter. The dry and wet thermal shrinkage of hybrid ATY increased with a larger nozzle diameter from 0.6 mm to 1 mm and then decreased at a nozzle diameter of 1.2 mm (which seems to be a critical diameter). The wet and dry thermal shrinkage of aramid/nylon hybrid ATY are influenced by the nylon part of the hybrid yarns because the wet and dry thermal shrinkages of aramid ATY are less than 0.2%. The instabilities of aramid and aramid/nylon hybrid ATY were not influenced by the air jet nozzle diameter; however, they increased with the linear density of ATY.

분사펌프에 연결된 구동관로 위치변화에 따른 유동특성 (Flow Characteristics of Driven Nozzle Position Change in the Connected Injection Pump)

  • 손현철;박길문;고현선;이행남
    • 대한기계학회논문집B
    • /
    • 제33권4호
    • /
    • pp.215-224
    • /
    • 2009
  • Analysis for various driven nozzle position changes. The analysis was done for different Reynolds number in entrance region of jet-pump and for several diameter ratios of driven nozzle. (1) The largest absorption energy was found at the point s=1 in condition of diameter ratio 1:3.21 and point s=0.5 in condition of diameter ratio 1:2.25. (2) The absorption energy was not related to the change of entrance velocity and the driven nozzle position having the largest absorption energy was function for cross section ratio. (3) As the position of driven nozzle moves to the downstream, the absorption energy gets weaker. Because the energy from swirl was lost at the cross section gets smaller. (4) As the position of driven nozzle moves to the downstream, the injection energy leans to the upper direction wall and as the Reynolds number increase, the lean phenomenon is more distinct. (5) The flow quantity of driven nozzle, the diameter ratio 1:3.21, was 32% higher than that of 1 : 2.25 and as the inlet velocity gets faster the efficiency decreased. And as the cross section of the driven nozzle increases.

3구 노즐을 이용한 산소의 용존율 향상 (Enhance of Dissolved Oxygen Rate using a 3-prong Nozzle)

  • 박영식
    • 한국환경과학회지
    • /
    • 제24권7호
    • /
    • pp.947-954
    • /
    • 2015
  • Dielectric barrier discharge plasma is a new technique in water pollutant degradation, which that is characterized by the production of chemically active species such as hydroxyl radicals, ozone, hydrogen peroxide, etc. If dissolving of plasma gas generated in the plasma reaction has increased, it is possible to increase the contaminant removal capacity. In this study, the improvement on the dissolving performance of plasma gas was evaluated by the indirect method measuring the overall oxygen transfer coefficient. Experiments were conducted to examine the effects of nozzle type, distance from water surface, air supply rate and liquid circulation rate. The experimental results showed that the $K_{La}$ value of the 3-prong nozzle is 2.67 times higher than the diffuser. The order of $K_{La}$ value with nozzle type ranked in the following order: 3-prong nozzle (inner diameter, less 1 mm) > circular nozzle (inner diameter, 1.5 mm) > ellipse nozzle (short diameter 1 mm, long diameter 2.5 mm) > circular nozzle (inner diameter, 3 mm). Optimal liquid circulation rate was appeared to be 1.7 L/min, the value of $K_{La}$ was 0.510 1/min. The value of $K_{La}$ with increasing air supply rate was revealed in the form of an exponential such as $K_{La}=0.3581e^{0.2919^*air\;flow\;rate}$.

접선류 임펠러형 수도미터의 노즐직경이 성능특성에 미치는 영향 (Effects of Nozzle Diameter on Performance Characteristics for a Tangential Impeller-type Water Meter)

  • 서상호;이병호;조민태;노형운
    • 한국유체기계학회 논문집
    • /
    • 제2권3호
    • /
    • pp.59-66
    • /
    • 1999
  • In this study the effects of nozzle diameter on the performance characteristics for the tangential impeller-type water meter are studied experimentally. The nozzle is cut along the tangential direction of the inner case in the water meter. The nozzle shape is round and the number of nozzles used for the experimental study are 8. The performance characteristics are discussed for various nozzle diameters such as 3.1, 3.3, 3.5, 4.0, 4.5 and 5.0 mm. Among the tangential impeller-type water meters, the water meter with the nozzle diameter of 5.0 mm shows the least pressure loss and the instrumental error compared to the Korean Standards.

  • PDF

Intermittent Atomization Characteristics of Multi-Hole and Single-Hole Diesel Nozzle

  • Lee, Jeekuen;Kang, Shin-Jae;Park, Byungjoon
    • Journal of Mechanical Science and Technology
    • /
    • 제16권12호
    • /
    • pp.1693-1701
    • /
    • 2002
  • The intermittent spray characteristics of a multi-hole and a single-hole diesel nozzle were experimentally investigated. The hole number of the multi-hole nozzle was 5, and the hole diameter of the 5-hole and the single-hole nozzle was the same as d$\_$n/=0.32 ㎜ with the constant hole length to diameter ratio(l$\_$n//d$\_$n/=2.81). The droplet diameters of the spray, including the time-resolved droplet diameter, SMD (Sauter mean diameter) and AMD (arithmetic mean diameter) , injected intermittently from the two nozzles into the still ambient were measured by using a 2-D PDPA (phase Doppler particle analyzer). Through the time-resolved evolutions of the droplet diameter, it was found that the structure of the multi-hole and the single-hole nozzle spray consisted of the three main parts : (a) the leading edge affected by surrounding air. and composed of small droplets; (b) the central part surrounded by the leading edge and mixing flow region and scarcely affected by the resistance of air, (c) the trailing edge formed by the passage of the central part. The SMD decreases gradually with the increase in the radial distance, and the constant value is obtained at the outer region of the radial distance (normalized by hole diameter) of 7-8 and 6 for the 5-hole and single-hole nozzle, respectively. The SMD along the centerline of the spray decrease shapely with the increase in the axial distance after showing the maximum value near the nozzle tip. The SMD remains the constant value near the axial distance(normalized by hole diameter) of 150 and 180 for the 5-hole and the single-hole nozzle, respectively.

광학식 입자 계수기 내 샘플 노즐 직경이 측정 효율 및 특성에 미치는 영향에 대한 실험적 연구 (Experimental analysis on effects of nozzle diameter on detection characteristics of an optical particle counter)

  • 송현우;김태욱;송순호
    • 한국입자에어로졸학회지
    • /
    • 제13권4호
    • /
    • pp.159-164
    • /
    • 2017
  • The detection efficiency and characteristics of an optical particle counter (OPC), with various sample nozzle outlet diameters, were experimentally investigated. The OPC system, which was built with original design, was made up of a diode laser, two photodetectors, and a variety of optics such as a beam splitter and a concave mirror. The cone-shaped sampling nozzle was designed to be changeable to alter the outlet diameter, within the range of 1 to 3 mm. For samples, sets of polystyrene latex (PSL) standard particle with various sizes of 1 to $3{\mu}m$, were used. As a result, detection efficiency of the OPC greatly decreased with larger nozzle outlet diameter. Moreover, increased nozzle outlet diameter means broader sample flow, thus caused light interference and multiple scattering which results in abnormal high peaks in scattered light signal. The ratio of abnormal peaks to regular signal of single particle increased with larger nozzle outlet diameter.

펨토초 레이저를 이용한 미세 연소노즐 가공 기술 (Machining Technology of Micro Combustion Nozzle Using a Femtosecond Laser)

  • 김경찬;김경호;하지수;손익부;최해운;김태권
    • 한국정밀공학회지
    • /
    • 제27권11호
    • /
    • pp.24-29
    • /
    • 2010
  • The shape of combustion nozzles varies from large diameter to small diameter ones. In the case of small nozzle, nozzle exit can be easily winkled or damaged in machining process. Femtosecond laser is a micro machining technology that is able to drill a small nozzle without damaging the nozzle exit. In this experiment, a small nozzle of combustion was fabricated by using a femtosecond laser. The fabricated nozzle of combustion provided a very small nozzle diameter with clean nozzle exit without wrinkling or collateral damage.