Stayed cables are the key components for transmitting loads in cable-stayed bridges. Therefore, it is very important to evaluate the cable force condition to ensure bridge safety. An online condition assessment and anomaly localization method is proposed for cables based on the spatiotemporal correlation of grouped cable forces. First, an anomaly sensitive feature index is obtained based on the distribution characteristics of grouped cable forces. Second, an adaptive anomaly detection method based on the k-nearest neighbor rule is used to perform dissimilarity measurements on the extracted feature index, and such a method can effectively remove the interference of environment factors and vehicle loads on online condition assessment of the grouped cable forces. Furthermore, an online anomaly isolation and localization method for stay cables is established, and the complete decomposition contributions method is used to decompose the feature matrix of the grouped cable forces and build an anomaly isolation index. Finally, case studies were carried out to validate the proposed method using an in-service cable-stayed bridge equipped with a structural health monitoring system. The results show that the proposed approach is sensitive to the abnormal distribution of grouped cable forces and is robust to the influence of interference factors. In addition, the proposed approach can also localize the cables with abnormal cable forces online, which can be successfully applied to the field monitoring of cables for cable-stayed bridges.
Structural health monitoring (SHM) has been related to damage identification with either operational loads or other environmental loading playing a significant complimentary role in terms of structural safety. In this study, a non-parametric method of time frequency analysis on the measurement is used to address the time-frequency representation for modal parameter estimation and system damage identification of structure. The method employs the wavelet decomposition of dynamic data by using the modified complex Morlet wavelet with variable central frequency (MCMW+VCF). Through detail discussion on the selection of model parameter in wavelet analysis, the method is applied to study the dynamic response of both steel structure and reinforced concrete frame under white noise excitation as well as earthquake excitation from shaking table test. Application of the method to building earthquake response measurement is also examined. It is shown that by using the spectrogram generated from MCMW+VCF method, with suitable selected model parameter, one can clearly identify the time-varying modal frequency of the reinforced concrete structure under earthquake excitation. Discussions on the advantages and disadvantages of the method through field experiments are also presented.
인간은 목적지를 향하여 가는 방법의 선택에 있어서 가고자 하는 목적, 목적지, 출발 시간 등에 영향을 받는다. 그러나 이러한 매개변수들과 더불어 중요하게 고려되는 것은 바로 인간의 습관이다. 다시 말해 인간이 목적지로 가는 방법을 선택하는데 습관이라는 매개변수와 밀접한 영향이 있다는 것이다. 이를 미루어 볼 때, 인간의 이동은 습관으로 인해 대부분 특정한 범주 안에서 이동을 할 것이라는 추측할 수 있다. 나아가, 사람들이 흔히 들고 다니는 GPS장치에서 측정된 데이터가 추측한 속성으로 인해 범주를 벗어나는 이상현상을 검출하는 것으로 확장을 할 수 있다. 즉, GPS장치에서 측정된 데이터는 개인별로 클래스화(Classification)가 가능함을 추론할 수 있다. 본 논문에서는 실제 사람이 이동한 좌표를 바탕으로 시간당 변화량을 계산하여 좌표에 사상시켰다. 그리고, 단일 클래스 서포트 백터 머신(OCSVM)을 가지고 클래스화 했으며, OCSVM의 커널 함수 내의 변수인에 따라 클래스의 크기 혹은 클래스 내부의 밀도에 영향을 받음을 알 수 있었으며, 그 둘 사이에는 적절한 교환(Tradeoff)이 발생하였다는 결론이 나왔다.
본 논문에서는 네트워크 이상치 탐지를 위하여 정상 데이터만을 활용한 메모리 기반 정상성 학습 모델을 제안한다. 오토인코더를 기반으로 정상 데이터의 특징을 표현하는 프로토타입을 생성할 수 있도록 신경망을 구성하고, 네트워크 데이터의 특성을 반영하여 쿼리의 수를 한 개로 고정하며, 사용되는 프로토타입의 수를 지정한 값으로 고정하여 모든 프로토타입에 정상 데이터의 특징을 반영할 수 있는 학습 방법을 제안한다. 해당 모델을 네트워크 이상치 탐지 데이터 세트인 Kyoto Honeypot, UNSW-NB15, CICIDS-2018에 적용하여 본 결과 Kyoto Honeypot에서는 0.821, UNSW-NB15에서는 0.854, CICIDS-2018에서는 0.981의 AUROC를 달성했다.
본 논문은 보호하고자 하는 중요문서의 다양한 변조를 통한 유출시도를 정확히 탐지하는 알고리즘을 제시한다. 중요문서는 내부자에 의해 다양한 방법으로 변조된 후 유출이 시도되고 있으나, 중요문서 유출탐지에 관한 기존 연구들은 유사도를 기반으로 함으로써 중요정보에 대한 다양한 변조 형태를 정확히 반영하지 못하여 탐지 정확도가 떨어지는 단점이 있다. 본 연구는 이를 해결하기 위해 SVDD(Support Vector Data Description)을 이용한 새로운 중요문서 유출 탐지 알고리즘인 v-SVDD 알고리즘을 제시한다. 본 연구에서 제시한 알고리즘 수행결과는 기존 연구결과와 비교할 때 변조 유출 탐지 측면에서 우수한 정확도를 보여준다.
Ali Zar;Zahoor Hussain;Muhammad Akbar;Bassam A. Tayeh;Zhibin Lin
Smart Structures and Systems
/
제32권5호
/
pp.319-338
/
2023
The study presents a new hybrid data-driven method by combining radial basis functions neural networks (RBF-NN) with the Jaya algorithm (JA) to provide effective structural health monitoring of arch dams. The novelty of this approach lies in that only one user-defined parameter is required and thus can increase its effectiveness and efficiency, as compared to other machine learning techniques that often require processing a large amount of training and testing model parameters and hyper-parameters, with high time-consuming. This approach seeks rapid damage detection in arch dams under dynamic conditions, to prevent potential disasters, by utilizing the RBF-NNN to seamlessly integrate the dynamic elastic modulus (DEM) and modal parameters (such as natural frequency and mode shape) as damage indicators. To determine the dynamic characteristics of the arch dam, the JA sequentially optimizes an objective function rooted in vibration-based data sets. Two case studies of hyperbolic concrete arch dams were carefully designed using finite element simulation to demonstrate the effectiveness of the RBF-NN model, in conjunction with the Jaya algorithm. The testing results demonstrated that the proposed methods could exhibit significant computational time-savings, while effectively detecting damage in arch dam structures with complex nonlinearities. Furthermore, despite training data contaminated with a high level of noise, the RBF-NN and JA fusion remained the robustness, with high accuracy.
Mohammad Saleh Sharifi;Ho Seung Song;Hossein Afarideh;Mitra Ghergherehchi;Mehdi Simiari
Nuclear Engineering and Technology
/
제55권12호
/
pp.4570-4575
/
2023
Noise and Radio-frequency interference or RFI causes a significant restriction on the Free induction Decay or FID signal detection of the Nuclear Quadrupole Resonance procedure. Therefore, using this method in non-isolated environments such as industry and ports requires extraordinary measures. For this purpose, noise reduction algorithms and increasing signal-to-noise-and-interference ratio or SNIR have been used. In this research, sodium nitrite has been used as a sample and algorithms have been tested in a non-isolated environment. The resonant frequencies for the 150 g of test sample were measured at 303 K at about 1 MHz and 3.4 MHz. The main novelty in this study was, (1) using two types of antennas in the receiver to improve adaptive noise and interference cancellation, (2) using a separate helical antenna in the transmitter to eliminate the duplexer, (3) estimating the noise before sending the pulse to calculate the weighting factors and reduce the noise by adaptive noise cancellation, (3) reject the interference by blanking algorithm, (4) pulse integration in the frequency domain to increase the SNR, and (5) increasing the detection speed by new pulse integration technique. By interference rejection and noise cancellation, the SNIR is improved to 9.24 dB at 1 MHz and to 7.28 dB at 3.4 MHz, and by pulse integration 44.8 dB FID signal amplification is achieved, and the FID signals are detected at 1.057 MHz and 3.402 MHz at room temperature.
본 외곽선 탐지는 모양 판별 및 객체 인식과 같은 많은 컴퓨터 시각 분야에 있어서 중요한 문제이다. 대부분의 경우에 지역적인 휘도 변화가 객체 윤곽선에서 보다는 무늬 영역에서 보다 강하게 나타나는 것으로 판명되고 있다. 따라서 각 화소의 가까운 인접된 부분에서만 볼 수 있는 지역적인 에지 특징들은 하나의 윤곽선 존재의 믿을만한 정보가 될 수 없기 때문에 전체적인 분석이 요구되고 있다. 본 연구에서는 형태심리학적 원리를 바탕으로 가상 연산자의 변형된 형태로서 적응성을 갖는 확대 연산자에 의한 지역적인 윤곽선 탐지 기법을 제안한다. 제안 방식의 새로운 점은 확대 방식에 있어서 각 윤곽선 화소에 관해 계산 기하학의 관점에서 Delaunary 다이어그램을 사용한다는 것이다. 윤곽선 그룹화와 관련하여 다중 임계 알고리즘이 도입되고, 각 임계 단계에서 작은 크기의 윤곽선 그룹들은 삭제되며, 자연 3차 스플라인 보간법을 통해 재구축되는 방식의 외형을 나타낸다. 또한, 상이한 임계들의 학습을 통해 입력 인자들의 값에 제안된 알고리즘이 민감하지 않은 견고한 성질을 유지하도록 한다. 본 연구의 구현에서는 기존 접근방식과의 비교를 통해 제안된 외형 결정 방식이 이미지에서 제거된 많은 텍스처들이 있음에도 불구하고 견고하고, 낮은 대비의 외형을 쉽게 감지하는데 효과적임을 보인다.
본 논문은 유한요소법과 유전알고리즘을 연동하여 지진하중을 받는 구조물의 강성저하(손상) 및 보강 후 효과를 추정하는 방법을 다루었다. 본 연구의 독창성은 지진하중을 적용하였고, 그 응답으로부터 구조물의 미지 변수를 추정한다는 점이다. 본 연구에서 제안한 방법은 지진하중으로부터 손상된 부위를 추정할 뿐 아니라, 그 위치와 정도를 규명할 수 있다. 제안한 방법을 검증하기 위하여 El Centro 및 포항 지진하중을 적용하여 저층 뼈대구조물와 트러스 교량을 대상으로 알고리즘을 실행하였다. 수치해석 예제는 제안한 방법이 수치해석적인 효율성 뿐 아니라 지진으로부터의 심각한 피해를 예방하는 데 적용할 수 있음을 보여주었다.
Providakis, C.P.;Triantafillou, T.C.;Karabalis, D.;Papanicolaou, A.;Stefanaki, K.;Tsantilis, A.;Tzoura, E.
Smart Structures and Systems
/
제14권5호
/
pp.811-830
/
2014
A numerical study has been carried out to simulate an innovative monitoring procedure to detect and localize damage in reinforced concrete beams retrofitted with carbon fiber reinforced polymer (CFRP) unidirectional laminates. The main novelty of the present simulation is its ability to conduct the electromechanical admittance monitoring technique by considerably compressing the amount of data required for damage detection and localization. A FEM simulation of electromechanical admittance-based sensing technique was employed by applying lead zirconate titanate (PZT) transducers to acquire impedance spectrum signatures. Response surface methodology (RSM) is finally adopted as a tool for solving inverse problems to estimate the location and size of damaged areas from the relationship between damage and electromechanical admittance changes computed at PZT transducer surfaces. This statistical metamodel technique allows polynomial models to be produced without requiring complicated modeling or numerous data sets after the generation of damage, leading to considerably lower cost of creating diagnostic database. Finally, a numerical example is carried out regarding a steel-reinforced concrete (RC) beam model monotonically loaded up to its failure which is also retrofitted by a CFRP laminate to verify the validity of the present metamodeling monitoring technique. The load-carrying capacity of concrete is predicted in the present paper by utilizing an Ottosen-type failure surface in order to better take into account the passive confinement behavior of retrofitted concrete material under the application of FRP laminate.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.