Annual Conference of KIPS (한국정보처리학회:학술대회논문집)
- 2011.04a
- /
- Pages.1060-1063
- /
- 2011
- /
- 2005-0011(pISSN)
- /
- 2671-7298(eISSN)
DOI QR Code
A Study on Novelty Detection of GPS Data Using Human Mobility and OCSVM(One-class SVM)
OCSVM(One-class SVM)과 인간의 이동을 이용한 GPS 데이터의 이상 현상 검출에 관한연구
- Kim, Woo-Joong (Department of Computer Engineering, Hongik University) ;
- Song, Ha-Yoon (Department of Computer Engineering, Hongik University)
- Published : 2011.04.30
Abstract
인간은 목적지를 향하여 가는 방법의 선택에 있어서 가고자 하는 목적, 목적지, 출발 시간 등에 영향을 받는다. 그러나 이러한 매개변수들과 더불어 중요하게 고려되는 것은 바로 인간의 습관이다. 다시 말해 인간이 목적지로 가는 방법을 선택하는데 습관이라는 매개변수와 밀접한 영향이 있다는 것이다. 이를 미루어 볼 때, 인간의 이동은 습관으로 인해 대부분 특정한 범주 안에서 이동을 할 것이라는 추측할 수 있다. 나아가, 사람들이 흔히 들고 다니는 GPS장치에서 측정된 데이터가 추측한 속성으로 인해 범주를 벗어나는 이상현상을 검출하는 것으로 확장을 할 수 있다. 즉, GPS장치에서 측정된 데이터는 개인별로 클래스화(Classification)가 가능함을 추론할 수 있다. 본 논문에서는 실제 사람이 이동한 좌표를 바탕으로 시간당 변화량을 계산하여 좌표에 사상시켰다. 그리고, 단일 클래스 서포트 백터 머신(OCSVM)을 가지고 클래스화 했으며, OCSVM의 커널 함수 내의 변수인에 따라 클래스의 크기 혹은 클래스 내부의 밀도에 영향을 받음을 알 수 있었으며, 그 둘 사이에는 적절한 교환(Tradeoff)이 발생하였다는 결론이 나왔다.
Keywords