• Title/Summary/Keyword: Novel target

Search Result 1,026, Processing Time 0.024 seconds

Novel Partitioning Algorithm for a Gaussian Inverse Wishart PHD Filter for Extended Target Tracking

  • Li, Peng;Ge, Hongwei;Yang, Jinlong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.11
    • /
    • pp.5491-5505
    • /
    • 2017
  • Use of the Gaussian inverse Wishart PHD (GIW-PHD) filter has demonstrated promise as an approach to track an unknown number of extended targets. However, the partitioning approaches used in the GIW-PHD filter, such as distance partition with sub-partition (DP-SP), prediction partition (PP) and expectation maximization partition (EMP), fails to provided accurate partition results when targets are spaced closely together and performing maneuvers. In order to improve the performance of a GIW-PHD filter, this paper presents a cooperation partitioning (CP) algorithm to solve the partitioning issue when targets are spaced closely together. In the GIW-PHD filter, the DP-SP is insensitive to target maneuvers but sensitive to the differences in target sizes, while EMP is the opposite. The proposed CP algorithm is a fusion approach of DP-SP and EMP, which employs EMP as a sub-partition approach after DP. Therefore, the CP algorithm will be sensitive to neither target maneuvers nor differences in target sizes. The simulation results show that the use of the proposed CP algorithm will improve the performance of the GIW-PHD filter when targets are spaced closely together.

Prediction of Mammalian MicroRNA Targets - Comparative Genomics Approach with Longer 3' UTR Databases

  • Nam, Seungyoon;Kim, Young-Kook;Kim, Pora;Kim, V. Narry;Shin, Seokmin;Lee, Sanghyuk
    • Genomics & Informatics
    • /
    • v.3 no.3
    • /
    • pp.53-62
    • /
    • 2005
  • MicroRNAs play an important role in regulating gene expression, but their target identification is a difficult task due to their short length and imperfect complementarity. Burge and coworkers developed a program called TargetScan that allowed imperfect complementarity and established a procedure favoring targets with multiple binding sites conserved in multiple organisms. We improved their algorithm in two major aspects - (i) using well-defined UTR (untranslated region) database, (ii) examining the extent of conservation inside the 3' UTR specifically. Average length in our UTR database, based on the ECgene annotation, is more than twice longer than the Ensembl. Then, TargetScan was used to identify putative binding sites. The extent of conservation varies significantly inside the 3' UTR. We used the 'tight' tracks in the UCSC genome browser to select the conserved binding sites in multiple species. By combining the longer 3' UTR data, TargetScan, and tightly conserved blocks of genomic DNA, we identified 107 putative target genes with multiple binding sites conserved in multiple species, of which 85 putative targets are novel.

FoxM1 as a Novel Therapeutic Target for Cancer Drug Therapy

  • Xu, Xin-Sen;Miao, Run-Chen;Wan, Yong;Zhang, Ling-Qiang;Qu, Kai;Liu, Chang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.1
    • /
    • pp.23-29
    • /
    • 2015
  • Background: Current cancer therapy mainly focuses on identifying novel targets crucial for tumorigenesis. The FoxM1 is of preference as an anticancer target, due to its significance in execution of mitosis, cell cycle progression, as well as other signal pathways leading to tumorigenesis. FoxM1 is partially regulated by oncoproteins or tumor suppressors, which are often mutated, lost, or overexpressed in human cancer. Since sustaining proliferating signaling is an important hallmark of cancer, FoxM1 is overexpressed in a series of human malignancies. Alarge-scale gene expression analysis also identified FoxM1 as a differentially-expressed gene in most solid tumors. Furthermore, overexpressed FoxM1 is correlated with the prognosis of cancer patients, as verified in a series of malignancies by Cox regression analysis. Thus, extensive studies have been conducted to explore the roles of FoxM1 in tumorigenesis, making it an attractive target for anticancer therapy. Several antitumor drugs have been reported to target or inhibit FoxM1 expression in different cancers, and down-regulation of FoxM1 also abrogates drug resistance in some cancer cell lines, highlighting a promising future for FoxM1 application in the clinic.

A novel hybrid method for robust infrared target detection

  • Wang, Xin;Xu, Lingling;Zhang, Yuzhen;Ning, Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.5006-5022
    • /
    • 2017
  • Effect and robust detection of targets in infrared images has crucial meaning for many applications, such as infrared guidance, early warning, and video surveillance. However, it is not an easy task due to the special characteristics of the infrared images, in which the background clutters are severe and the targets are weak. The recent literature demonstrates that sparse representation can help handle the detection problem, however, the detection performance should be improved. To this end, in this text, a hybrid method based on local sparse representation and contrast is proposed, which can effectively and robustly detect the infrared targets. First, a residual image is calculated based on local sparse representation for the original image, in which the target can be effectively highlighted. Then, a local contrast based method is adopted to compute the target prediction image, in which the background clutters can be highly suppressed. Subsequently, the residual image and the target prediction image are combined together adaptively so as to accurately and robustly locate the targets. Based on a set of comprehensive experiments, our algorithm has demonstrated better performance than other existing alternatives.

Drug Target Identification and Elucidation of Natural Inhibitors for Bordetella petrii: An In Silico Study

  • Rath, Surya Narayan;Ray, Manisha;Pattnaik, Animesh;Pradhan, Sukanta Kumar
    • Genomics & Informatics
    • /
    • v.14 no.4
    • /
    • pp.241-254
    • /
    • 2016
  • Environmental microbes like Bordetella petrii has been established as a causative agent for various infectious diseases in human. Again, development of drug resistance in B. petrii challenged to combat against the infection. Identification of potential drug target and proposing a novel lead compound against the pathogen has a great aid and value. In this study, bioinformatics tools and technology have been applied to suggest a potential drug target by screening the proteome information of B. petrii DSM 12804 (accession No. PRJNA28135) from genome database of National Centre for Biotechnology information. In this regards, the inhibitory effect of nine natural compounds like ajoene (Allium sativum), allicin (A. sativum), cinnamaldehyde (Cinnamomum cassia), curcumin (Curcuma longa), gallotannin (active component of green tea and red wine), isoorientin (Anthopterus wardii), isovitexin (A. wardii), neral (Melissa officinalis), and vitexin (A. wardii) have been acknowledged with anti-bacterial properties and hence tested against identified drug target of B. petrii by implicating computational approach. The in silico studies revealed the hypothesis that lpxD could be a potential drug target and with recommendation of a strong inhibitory effect of selected natural compounds against infection caused due to B. petrii, would be further validated through in vitro experiments.

A Novel Nonlinear Robust Guidance Law Design Based On SDRE Technique

  • Moosapour, Seyyed Sajjad;Alizadeh, Ghasem;Khanmohammadi, Sohrab;Moosapour, Seyyed Hamzeh
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.3
    • /
    • pp.369-376
    • /
    • 2012
  • A nonlinear robust guidance law is designed for missiles against a maneuvering target by incorporating sliding-mode and optimal control theories based on the state dependent Riccati equation (SDRE) to achieve robustness against target accelerations. The guidance law is derived based on three-dimensional nonlinear engagement kinematics and its robustness against disturbances is proved by the second method of Lyapunov. A new switching surface is considered in the sliding-mode control design. The proposed guidance law requires the maximum value of the target maneuver, and therefore opposed to the conventional augmented proportional navigation guidance (APNG) law, complete information about the target maneuver is not necessary, and hence it is simple to implement in practical applications. Considering different types of target maneuvers, several scenario simulations are performed. Simulation results confirm that the proposed guidance law has much better robustness, faster convergence, and smaller final time and control effort in comparison to the sliding-mode guidance (SMG) and APNG laws.

Histone H4 is cleaved by granzyme A during staurosporine-induced cell death in B-lymphoid Raji cells

  • Lee, Phil Young;Park, Byoung Chul;Chi, Seung Wook;Bae, Kwang-Hee;Kim, Sunhong;Cho, Sayeon;Kang, Seongman;Kim, Jeong-Hoon;Park, Sung Goo
    • BMB Reports
    • /
    • v.49 no.10
    • /
    • pp.560-565
    • /
    • 2016
  • Granzyme A (GzmA) was first identified as a cytotoxic T lymphocyte protease protein with limited tissue expression. A number of cellular proteins are known to be cleaved by GzmA, and its function is to induce apoptosis. Histones H1, H2B, and H3 were identified as GzmA substrates during apoptotic cell death. Here, we demonstrated that histone H4 was cleaved by GzmA during staurosporine-induced cell death; however, in the presence of caspase inhibitors, staurosporine-treated Raji cells underwent necroptosis instead of apoptosis. Furthermore, histone H4 cleavage was blocked by the GzmA inhibitor nafamostat mesylate and by GzmA knockdown using siRNA. These results suggest that histone H4 is a novel substrate for GzmA in staurosporine-induced cells.

A Novel Receiver Sensing Scheme for Capacitive Power Transfer System (전계결합 무선전력전송의 수신부 감지 방법)

  • Jeong, Chae-Ho;Im, Hwi-Yeol;Choi, Sung-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.1
    • /
    • pp.62-65
    • /
    • 2019
  • Wireless power transfer systems require an algorithm to determine the presence of the target object for mitigating standby power and safety issues. Although many schemes that sense various external objects have been actively proposed for inductive power transfer systems, not many studies on capacitive power transfer systems have been conducted compared with those on inductive power transfer systems. This study proposes a target object detection algorithm by monitoring the capacitance in transmitter-side electrodes without additional pressure sensors or distance sensors. The proposed algorithm determines the presence of a target object by monitoring the change in capacitance in transmitter-side electrodes using the step pulse of the microcontroller unit. The algorithm is verified by two step processes. First, the performance in capacitance measurement is compared with that of an LCR meter. Then, the verification is conducted in a 5-W capacitive power transfer hardware. Experimental result shows that the interelectrode capacitance increases by 6 times when the target object is fully aligned. Thus, the proposed scheme can successfully detect the presence of the target object.

Main-Lobe Recognition for Sum-Delta Monopulse of Single-Ring Circular Array Antenna (단원형배열안테나의 합차 모노펄스 주엽 식별)

  • Hyeongyu Park;Daewoong Woo;Jaesik Kim
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.122-128
    • /
    • 2023
  • The target must be located within the main-lobe of the antenna in order to measure the direction of the target by using sum-delta monopulse technique. The most common way if the target is located within the main-lobe is to compare the amplitude of the sum channel received signal with the delta channel received signal. However, in the case of the single-ring circular array antenna, it is difficult to apply the conventional method due to its structural limitation where antenna elements do not exist in the center of the array. In this paper, we proposed a novel method to identify whether a target is located within the main-lobe by appropriately adjusting the feeding amplitude of each element constituting the single-ring circular array antenna through the particle swarm optimization method. Simulation results showed that the proposed method can determine whether the target is located within the main-lobe of the single-ring circular array antenna.

Novel Calibration Method for the Multi-Camera Measurement System

  • Wang, Xinlei
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.746-752
    • /
    • 2014
  • In a multi-camera measurement system, the determination of the external parameters is one of the vital tasks, referred to as the calibration of the system. In this paper, a new geometrical calibration method, which is based on the theory of the vanishing line, is proposed. Using a planar target with three equally spaced parallel lines, the normal vector of the target plane can be confirmed easily in every camera coordinate system of the measurement system. By moving the target into more than two different positions, the rotation matrix can be determined from related theory, i.e., the expression of the same vector in different coordinate systems. Moreover, the translation matrix can be derived from the known distance between the adjacent parallel lines. In this paper, the main factors effecting the calibration are analyzed. Simulations show that the proposed method achieves robustness and accuracy. Experimental results show that the calibration can reach 1.25 mm with the range about 0.5m. Furthermore, this calibration method also can be used for auto-calibration of the multi-camera mefasurement system as the feature of parallels exists widely.