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Abstract 
 

Use of the Gaussian inverse Wishart PHD (GIW-PHD) filter has demonstrated promise as an 
approach to track an unknown number of extended targets. However, the partitioning 
approaches used in the GIW-PHD filter, such as distance partition with sub-partition (DP-SP), 
prediction partition (PP) and expectation maximization partition (EMP), fails to provided 
accurate partition results when targets are spaced closely together and performing maneuvers. 
In order to improve the performance of a GIW-PHD filter, this paper presents a cooperation 
partitioning (CP) algorithm to solve the partitioning issue when targets are spaced closely 
together. In the GIW-PHD filter, the DP-SP is insensitive to target maneuvers but sensitive to 
the differences in target sizes, while EMP is the opposite. The proposed CP algorithm is a 
fusion approach of DP-SP and EMP, which employs EMP as a sub-partition approach after DP. 
Therefore, the CP algorithm will be sensitive to neither target maneuvers nor differences in 
target sizes. The simulation results show that the use of the proposed CP algorithm will 
improve the performance of the GIW-PHD filter when targets are spaced closely together. 
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1. Introduction 

Target tracking typically assumes that each target can produce at most one measurement 
each scan. However, in a modern high-precision sensor system, a target may produce more 
than a single measurement per scan, such a target called an extended target, and the typical 
multiple target tracking (MTT) approaches [1-3] fail to track the extended targets accuratly. 
Therefore, a growing number of works have been done for extended target tracking (ETT) [4-9] 
in resent years, and this is espacially true for multiple extended target tracking (METT) 
[10-17]. 

With finite set statistics (FISST), Mahler presented a random finite set (RFS) based filtering 
framework [1] to tracking of an unknown number targets. The first order moment of an RFS is 
the probability hypothesis density (PHD), which is an intensity function defined over the 
target state space. An important implementation of a MTT PHD filter is the Gaussian mixture 
PHD (GM-PHD) filter [2], which employs the Gaussian mixture method to approximate the 
target PHD. The discussion of the newborn target intensity of a GM-PHD can be found in [3]. 

In ETT, each target may produce a few measurements, thus an ETT filter ought to estimate 
the target extended state. Koch presented an ETT filter using random matrix (RM) [4], in 
which the target extended state is defined as a symmetric positive definite random matrix (i.e. 
covariance matrix). The random matrix is assumed to follow the Wishart distribution, thus the 
target extended state can be estimated by the inverse Wishart distribution. More discussions 
about the RM approaches can be found in [5-6]. Another important ETT approach is the 
random hypersurface models (RHMs) [7-9], which assumes that the measurements are 
randomly selected from a hypersurface defined by a shape function. A RHM approach can 
track a target using a Bayesian framework, and meanwhile estimate the extended state (i.e. the 
target shape) by estimating the parameters of the shape function. 

The RM and RHMs approaches cannot track an unknown number of extended targets as 
well as the typical PHD filters. Therefore, Mahler presented a multiple extended target PHD 
filter framework [10] for METT. Then, Granström el al. presented a Gaussian mixture 
implementation of this framework called extended target GM-PHD (ET-GM-PHD) filter [11]. 
The ET-GM-PHD filter uses the distance partitioning (DP) approach with different distance 
thresholds to provide several measurement partitions, and then the GM components will be 
updated by the partition with the largest likelihood. However, when targets are spaced closely 
together, the DP approach fails to provide accurate partitions, which lead to the estimation 
error of the ET-GM-PHD filter. To solve this problem, the DP-SP approach was presented in 
[12]. This approach first employs DP to divide the measurement set into cells, and then uses a 
so-called sub-partitioning (SP) method to divide the measurement cells produced by closely 
spaced targets into sub-cells. However, the ET-GM-PHD filter cannot estimate the target 
extensions (i.e. the target extended states are given values), which leads to the partitioning and 
tracking errors when the sizes of targets are different. In order to solve this issue, the 
GIW-PHD filter was presented in [13]. In this filter, the target kinematic state is assumed to 
follow the Gaussian distribution, while the extended state is assumed to follow the Wishart 
distribution. Therefore, the target extended state can be estimated by a RM approach. More 
discussions of the GIW-PHD filter can be found in [14-17]. However, tracking of closely 
spaced and maneuvering targets is an unsolved issue of the GIW-PHD filter yet (see section V 
in [13]), because the partitioning approaches, such as DP-SP, PP, and EMP, fail to provide 
accurate partitions in such a case. A shape selection partitioning (SSP) algorithm was 
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presented in [18] to solve the partitioning problem of closely spaced targets. The SSP employs 
the target shape to divide measurement set into sub-set, thus it is a promising approach to 
provide partitions of non-ellipsoidal targets. However, the SSP assumes that the number of 
closely spaced targets is two, i.e., it cannot apply to the scenario where there are three or more 
targets closely spaced, and it takes more computation cost compared with other approaches. 

This paper proposes a CP approach to improve the performance of the GIW-PHD filter 
when targets are spaced closely together. The key method of CP is the cooperation between 
DP-SP and EMP. First, we employ the DP approach to divide the measurement set into cells. 
Then, we propose an improved detection approach to detect whether a measurement cell ought 
to be divided into sub-cells. Finally, we improve the EMP algorithm to perform the division. 
The proposed CP algorithm combines the advantages of the two methods, thus using CP can 
improve the performance of a GIW-PHD filter than separately using DP-SP and EMP. In 
addition, with the same performance, the CP takes less computation costs than that of SSP and 
can handle the cases where the number of targets is larger than two. 

The paper is organized as follows. Section 2 introduces the partitioning issues. The CP 
approach is presented in section 3. Section 4 shows the simulation results. Conclusions are 
shown in section 5. 

2. Measurement Partitioning Issues 
The GIW-PHD filter is a significant implementation of the METT PHD framework, and the 
details of the GIW-PHD filter can be found in [13]. Measurement partitioning is an integral 
part of a GIW-PHD filter. Division of the set of measurements, Z, into nonempty cells, W, is 
the definition of a partition, p. If there is no accurate partition provided by a partitioning 
approach, the filter will provide inaccurate estimation inevitably. 

There are three partitioning approaches used in the GIW-PHD filter, i.e., DP-SP [12], PP 
and EMP [13], respectively. The DP-SP first uses DP (i.e. using the distance between 
measurements) to divide the measurement set into cells. Then, the DP-SP will detect whether a 
cell W contains too many measurements with,  

( )ˆ arg max | =
n

N p W N n= ,     (1a) 

( ) ( )| = = ois ,jp W N n P W nγ ,    (1b) 

where N̂  denotes the possible number of targets. ( )oisP ⋅  and ⋅  denote the Poisson 
distribution and the number of elements in a set, respectively. γ  denotes the expected number 
measurements generated by a target, and n is a positive integer. If ˆ 1N > , it means that W ought 
to be divided into N̂  sub-cells by using K-means++ algorithm [19]. Obviously, formula (1) 
cannot ensure to calculate a correct N̂  because of the randomness of the number of 
measurements. Moreover, there is no target prediction information used in DP-SP, which 
means that the performance of the DP-SP approach has no relation with the accuracy of the 
target prediction information. Hence, the DP-SP approach is insensitive to target maneuvers. 
However, the K-means++ fail to handle the cases in which targets are of different extensions, 
i.e., DP-SP can only be used when target extensions are similar. 

Compared with DP-SP, the PP and EMP approaches consider the target extensions as 
important parameters for dividing the measurement set. The PP approach employs the target 
predicted positions as the clustering centers, and then use the target extensions to assign each 
measurement to the corresponding center. Therefore, the PP approach is extremely sensitive to 
target maneuvers. The EMP approach is a generalization of the K-means++ algorithm, which 
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incorporates both the cluster extensions and number of measurements in each cluster. The 
EMP approach is not extremely sensitive to target maneuvers compared with PP, but it will 
also provide inaccurate partitions if the targets perform maneuvers at a high speed. Hence, the 
PP and EMP approaches cannot perform well in the scenario where targets are performing 
maneuvers.  

In order to handle a variety of scenarios, the GIW-PHD filter uses all of these three 
approaches simultaneously to provide enough partitions. However, if differently sized targets 
move along a turning track, no partitioning approach can handle such a case. Fig. 1 shows the 
estimation results of the GIW-PHD filter using the above partitioning approaches when two 
targets moved along turning tracks. No accurate partitions could be provided by any of the 
partitioning approaches, thus the target states were estimated incorrectly. In addition to these 
three approaches, a Kernel-density based partitioning approach was presented in [20]. 
However, this approach is used in the ET-GM-PHD filter and uses the target prediction 
information as well as PP and EMP. A fast partitioning approach was presented in [17]. 
However, only the computation cost of this partitioning approach is lower than that of using 
the above three approaches, i.e., the corresponding performance of this approach is similar to 
the above three approaches. The SSP algorithm was presented in [18], which can handle the 
cases where there are two targets closely spaced. However, the SSP takes more computation 
cost than other approaches, and the number of closely spaced targets cannot be larger than two. 
Hence, quickly partitioning of differently sized and closely spaced multi-targets moving along 
turning tracks is an important issue of METT. 
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Fig. 1. Estimation results of the GIW-PHD filter of a single trail. 

3. Cooperation Partitioning Algorithm 
The EMP algorithm fails to handle the cases in which the target prediction information is 
extremely inaccurate, while the DP-SP algorithm cannot divide the measurement cells which 
are of different sizes. Hence, we combine the DP-SP algorithm with the EMP algorithm to 
propose the CP algorithm. The advantage of DP-SP can ensure that the CP will be insensitive 
to target maneuvers, and the advantage of EMP can make the CP insensitive to the difference 
of target sizes, compared with using EMP and DP-SP independently. 
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3.1 Definitions and Key Methods of CP 
Suppose kZ  denotes the measurement set at time k, then the DP algorithm [11] can divide kZ  
into several measurement cells, i.e., ( ){ }i

kW . There are two definitions as follows: 

Definition 1: ( )
| 1
i

k kM −  is the set of predicted target positions which are close to ( )i
kW , if 

( ) ( ) ( ){ } | 1,
| 1 | 1 max 1

|
k kJi j d j

k k k k M j
M m d ϑ

−

− −
=

= < ,     (2a) 

( ) ( ) ( )( ) ( ) ( )( ), ,
| 1 | 1

Tj i j d i j d
M k k k k k kd z m z m− −= − − ,    (2b) 

( )
( ) ( )

1
i

k k

i
k kz Wi

k

z z
W ∈

= ∑ ,      (2c) 

where ( ),
| 1
j d

k km −  denotes a d-dimensional GIW component predicted position at time k, and d 
denotes the dimension of the physical space. maxϑ   is the maximum distance threshold used in 
the DP algorithm. | 1k kJ −  is the number of the  predicted components. ( )i

kz  denotes the mean of 
( )i

kW .  
Definition 2: ( )i

kΨ  is the set of the means of measurement cells which are close to ( )i
kW , if 

( ) ( ) ( ){ }max 1
|

WNi
k kz d iϑΨ

=
Ψ = < ≠ 



， ,     (3a) 

( ) ( ) ( )( ) ( ) ( )( )Ti i
k k k kd z z z zΨ = − −   ,     (3b) 

where ( )
kz   denotes the mean of a cell ( )

kW  . WN  denotes the number of the cells divided by DP. 
In fact, ( )i

kΨ  denotes the set consisted of the cell means who are around ( )i
kW . 

The key method of CP is to use ( )
| 1
i

k kM −  and ( )i
kΨ  to detect whether ( )i

kW  ought to perform a 
division, and than use an improved EMP to divide ( )i

kW  into sub-cells. 

3.2 Implementation of CP 
Since formula (1) cannot ensure the detection accuracy, we propose a novel approach to detect 
whether a cell ( )i

kW  ought to perform a division. According to Definition 1 and Definition 2, 
the CP can detect whether ( )i

kW  ought to be divided into sub-cells with,  

( )( )
, 1 0

ˆ arg max ois , , 1 0

1 , others

M M

i
k M

n

N N and N

N P W n N and Nγ

Ψ

Ψ

 > =
= ≤ =



,   (4) 

where MN denotes the number of the elements in set ( )
| 1
i

k kM − , and NΨ denotes the number of the 
elements in set ( )i

kΨ . The formula (4) means three situations: 
○1 E

A If there are other measurement cells around the cell ( )
kW  , i.e., 0NΨ > , ( )i

kW  may have been 
partitioned accurately by DP (i.e. ( )i

kW  is generated by a single target). 
A○2 E

A In the cases which =0NΨ , if several predicted GIW components are around ( )i
kW , obviously, 

( )i
kW  may be generated from MN  targets;  
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A○3 E

A If =0NΨ  and 1MN ≤ , the prediction information may be inaccurate (such as shown in Fig. 
1), thus N̂  ought to be estimated by the original approach, i.e., formula (1).  
If ˆ 1N >  and the situation is A○3 E

A, the K-means++ approach ought to be used at this time step, 
because the inaccurate prediction information will affect the performance of EMP. If ˆ 1N >  
and the situation is A○2 E

A, ( )i
kW  can be divided into N̂  sub-cells by an improved EMP algorithm. 

In the original EMP algorithm, the initialized cluster means { }
ˆ

1

N
t tµ

=
 are defined as the target 

predicted positions, which leads to the partitioning error when targets are performing 
maneuvers. Therefore, in the proposed CP algorithm, { }

ˆ

1

N
t tµ

=
 will be modified by ( )i

kW  to limit 
the prediction error, by 

( ) ( ) ( ), ,
| 1 | 1
j d j d i

t k k k k km m zµ − −= − + ,     (5a) 

( ) ( )
( ) ( ),
| 1 | 1

, ,
| 1 | 1

1
ˆ j d i

k k k k

j d j d
k k k km M

m m
N − −

− −∈
= ∑ ,     (5b) 

where ( ),
| 1
j d

k km −  denotes the mean of ( )
| 1
i

k kM − . Fig. 2 shows the meaning of formula (5). The left part 
in Fig. 2 shows the scenario where the prediction errors of GIW components are extremely 
large, and this will lead to the failure of the EMP algorithm. The formula (5), however, can 
reduce the prediction error, thus the use as a sub-partitioning approach of the EMP algorithm 
can handle the cases in which the targets are performing maneuvers. Then, other initialized 
parameters can be given from the corresponding GIW components of ( )

| 1
i

k kM − , i.e., the 
covariances ( )

| 1
ˆ j

t k kX −∑ =  and mixing coefficients ( )j
tπ γ∝ , where ( )

| 1
ˆ j

k kX −  is the estimated 
extension matrices and ( )jγ  is the estimated numbers of measurements of the j th GIW 
component. According to [21], the EMP can divide the cell ( )i

kW  into sub-cells as follows: 
1) E setp: evaluating the responsibilities using the posterior probability 

( ) ( )

( )
ˆ

1

; ,
,

; ,

t c t t
N

c t t

N z
c t

N zη
η

π µ
ω

π µ
=

∑
=

∑∑
,     (6) 

where cz  is a measurement of cell ( )i
kW . ( ),c tω  denotes the weight of cz  and cluster t. 

2) M step: re-estimate the parameters using the current responsibilities 

( )
( )

1

1 ,

i
kW

new
t c

ct

c t z
N

µ ω
=

= ∑ ,     (7a) 

( )
( )

( ) ( )
1

1 ,

i
kW

Tnew new new
t c t c t

ct

c t z z
N

ω µ µ
=

∑ = − −∑ ,    (7b) 

( )
new t
t i

k

N
W

π = ,        (7c) 

( )
( )

1
,

i
kW

t
c

N c tω
=

= ∑ ,       (7d) 

where tN  can be interpreted as the effective number of points assigned to cluster t. 
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3) Evaluate the log likelihood: 

( ) ( )
( )

ˆ

1 1
ln , , ln ; ,

i
kW N

t c t t
c k

N zρ µ π π µ
= =

  ∑ = ∑ 
  

∑ ∑ .     (8) 

If the convergence criterion ρ  is not satisfied, return to the E step. 
 

( ) ( ) ( ), ,
| 1 | 1
j d j d i

k k k k km m z− −− +

( ),
| 1
j d

k km −

kz

 
Fig. 2. Illumination of formula (5). The dots denote the measurement of ( )

| 1
i

k kM − . The squares denote the 

predicted positions of GIW components of ( )
| 1
i

k kM − . 

4. Simulation results 
The measurement of an extended target is modeled by [5]  

( ) ( ) ( ) ( )j i j
k k d k kz H x e= ⊗ +I ,     (9a) 
( ) ( ) ( )

,1 ,2= +j j j
k k ke e e ,      (9b) 

where dI  is a d-dimensional unit matrix and [ ]1 0 0kH = . ( )
,1
j

ke  is the target extension noise 
following a Uniform distribution ( )T

k k kU A X A , and ( )
,2
j

ke  is the sensor noise following a 
Gaussian distribution ( )kR  (i.e. the measurement model is referred to as 

( ) ( )+T
k k k kU A X A R ). kX  is an extension matrix of the Uniform distribution and kA  is a 

rotation matrix determined by the motion model. kR  is a Gaussian measurement noise of the 
sensor. The number of measurements of each target follows Poisson distribution with the 
mean ( ) 15jγ = . 
The parameters of simulated scenarios are given as 

1 s, 0.99s DT p= = ,     (10a) 
2 7

,=4000 4000 m , 6.25 10FA kβ −× = × ,   (10b) 

[ ]( ) [ ]( )1, 1 , 5, 5, 0, 0k kR diag Q diag= = ,    (10c) 
where sT  is the sensor scanning interval and Dp  is the detection probability.  denotes the 
surveillance volume with the rate parameter, i.e. the Poisson mean of clutter measurements is 

, =10FA kβ×  per scan. kQ  and kR  are the covariances of process noise and measurement noise 
respectively. 
The parameters of GIW-PHD filter are 

0 00.1, 7, 5w v τ= = = ,     (11a) 
[ ]( )0 50, 50V diag= ,     (11b) 
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[ ]( )0 25,25,100,100P diag= ,    (11c) 
where 0w  is the weight of birth GIW component. 0v , 0V  and 0P  are inverse Wishart degrees of 
freedom, inverse scale matrix and Gaussian covariance of birth GIW components, respectively. 
The distance thresholds of DP-SP is { }5,10,15, ,30ϑ =  .  
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Fig. 3. True tracks of targets. 

4.1 The Extended Target Optimal Subpattern Assignment Metric (ET-OSPA) 
The performance of a PHD filter is typically evaluated by the optimal subpattern assignment 
(OSPA) metric [22]. However, the estimated target extensions are not considered by the 
OSPA metric, thus an ET-OSPA metric [18] was presented for extended target PHD filters 
with, 

( ) ( ) ( )

( ) ( )( ) ( )

1

1

1, min

, , ,

n

m
c c

p
i

pp
p

i i i i

d X Y d
n

x X y Y c n m

π

π π

∈ =

 
=   ∏

× + − 

∑ 

 

,     (12a) 

( )
( ) ( )( ) ( )( )

( ),, , , = - +
i i

p pc p
i i ii i i X Yd x X y Y x y RMSE

ππ π π  

  ,    (12b) 

( ) ( )( )2

, =
i i

p
p

i iX YRMSE tr X Y
π π

  −    
 

   ,    (12c) 

where function 
( ),i i

p
X YRMSE

π
 

 denotes the extension error. m denotes the estimated number of 

targets and n is the true number of targets. c and p are the given scaling values, respectively. ix  
and ( )iyπ  are the estimated target position and true target position, respectively. iX  and ( )iYπ

  

are estimated and true extension matrix respectively. [ ]tr ⋅  denotes the trace of a matrix. 

4.2 Turning tracks 
The scenario is simulated by the extended targets with the corresponding extension matrices 

( ) [ ]( )1 = 20,4X diag  and ( ) [ ]( )2 = 10,2X diag , respectively. They moved closer from time 0-20 s, 
and then moved linearly together from 21-40 s. They started the turning tracks at time 41 s and 
moved linearly together again from 61-80 s. Finally, they moved separately from 81-100 s. 
Their tracks were shown in Fig. 3 (a).  
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Fig. 4 shows the average performances of 100 Monte Carlo runs. Fig. 4 (a) shows the 
ET-OSPA values of the ET-GM-PHD filter and the GIW-PHD filter using different 
partitioning approaches. The values of ET-GM-PHD are significantly larger than that of the 
GIW-PHD filter. The reason of this is that the ET-GM-PHD filter cannot estimate the target 
extensions (for this filter, the preset extension parameter is given as [ ]( )20,20diag ), thus it 
fails to handle the cases where target extensions are different. The values of DP-SP are larger 
than other approaches from 21-40 s and 61-80 s. It means that the partition accuracy of the 
DP-SP is lower than the CP, SSP and the DP-SP with EMP and PP when targets moved 
linearly together. However, when targets performed maneuvers form 41-60 s, the performance 
of the DP-SP with EMP and PP is roughly equal to that of the DP-SP. The reason is that the 
EMP and PP algorithms are sensitive to target maneuvers, thus the partitions provided by the 
DP-SP are more accurate. The values of the CP and the values of SSP are roughly equal to that 
of the DP-SP with EMP and PP from 0-40 s and 61-100 s, but quite lower from 41-60 s. It 
means that the proposed CP and the SSP can achieve the same performance whit the DP-SP 
with EMP and PP when targets move linearly together, but the CP is not sensitive to target 
maneuvers. The values of the CP are roughly the same as that of the SSP, because the SSP is a 
maneuver-insensitive partitioning method as well as the CP. However, as shown in Fig. 4 (b), 
the time cost of the SSP is significantly larger than other approaches, but the time costs of the 
CP and the DP-SP with EMP and PP are roughly the same. Therefore, the performances of CP 
are better than either the SSP or the DP-SP with EMP and PP. Fig. 4 (c) shows the average 
estimated number of targets. The conclusions of Fig. 4 (a) applies equally to Fig. 4 (c). 

Fig. 5 shows the estimation results of the GIW-PHD filter using the CP and using the DP-SP, 
EMP and PP of a single trial. Fig. 5 (a), (b) and (c) show the results about 21-40 s, 41-60 s and 
61-80, respectively. In Fig. 5 (a) and (c), the results of CP and the DP-SP with EMP and PP are 
the same, because the both methods can handle the cases where targets move uniformly. In Fig. 
5 (b), the estimated ellipses of using the DP-SP with EMP and PP do not fit with the extensions 
of measurements significantly, and sometimes the measurements generated by the two targets 
are estimated as a single ellipse. It means that the inaccurate partitions provided by the DP-SP 
with EMP and PP can lead to the estimation error directly. However, in intuitively, the 
estimation results of using the CP are quite better then using the DP-SP with EMP and PP, and 
this leads to the results in Fig. 4. 
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Fig. 4. Average performances of 100 runs.  
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Fig. 5. Estimation results of a single trail.  

4.3 Crossing tracks 
The scenario is simulated by four extended targets with the corresponding extension matrices 

( ) [ ]( )1 = 20,4X diag , ( ) [ ]( )2 = 10,2X diag , ( ) [ ]( )3 = 15,2X diag and ( ) [ ]( )4 = 5,1X diag , respectively. 
Target 1 and target 2 moved closer from 0-30 s, and then moved linearly together from 31-40 s. 
They moved along the turning tracks from 41-60 s, and then they moved separately. Target 3 
generated at 21 s and moved along a turning track from 21-80 s. Target 4 generated at 41 s and 
moved linearly from 41-60 s. All of the targets were closely spaced about time 50 s. Their 
tracks were shown in Fig. 3 (b). Note that the SSP algorithm fails to handle the cases where the 
number of closely spaced targets is larger than two, thus the SSP algorithm were not used in 
this scenario.  

Fig. 6 shows the average performances of 100 Monte Carlo runs. Fig. 6 (a) shows the 
ET-OSPA values of the different approaches. The values of the ET-GM-PHD filter are 
significantly larger than that of the GIW-PHD filter, which means that the performance of the 
ET-GM-PHD filter is worse than that of the GIW-PHD filter when there are several targets in 
the scenario. When targets moved closer, the values of DP-SP, EMP and PP are lower than that 
of DP-SP. Therefore, the EMP and PP algorithms can improve the performance of the 
GIW-PHD filter in the scenario where there are several targets closely spaced and crossing. 
The values of the CP are lower than other approaches from 30-55 s, thus the proposed CP 
algorithm can achieve better performance than other approaches in this scenario. The same 
results are shown in Fig. 6 (b), in which the values of the CP are closer to the true values than 
that of other approaches when targets moved closer. 

Fig. 7 shows the estimation results of the GIW-PHD filter using the CP and using the 
DP-SP, EMP and PP of a single trial. Fig. 7 (a), (b) and (c) show the results from 41-47 s, 
47-52 s and 53-59 s, respectively. In Fig. 7 (a), the estimation results of DP-SP, EMP and PP 
are worse than that of CP because of target maneuvers. In Fig. 7 (b), all of the targets are 
closely spaced, and the CP performs a better performance than that of the DP-SP, EMP and PP 
as well. In Fig. 7 (c), the targets move separately. The performances of the both approaches are 
roughly the same, because the DP-SP can handle the cases where the distance between each 
target is large enough. The results of Fig. 7 result in the conclusions of Fig. 6. 
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Fig. 6. Average performances of 100 runs.  
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Fig. 7. Estimation results of a single trail.  

5. Conclusion 
This paper proposes a CP approach to solve the partitioning problem of closely spaced 

targets. The CP is a combination of DP-SP and EMP, which uses the sub-partition method to 
improve the initial parameters of the EMP, thus a GIW-PHD filter using CP can achieve better 
performance than using DP-SP and EMP separately. Compared with the SSP, the CP takes 
lower time cost than SSP and achieves the same accuracy when the number of targets is two, 
and the CP can handle the cases where several targets are closely spaced. Therefore, the 
proposed CP algorithm can achieve better performance than other partitioning approaches 
used in the GIW-PHD filter. 

In the future works, we plan to apply the CP to the particle PHD filters to solve the 
clustering problem of the particle swarm. When targets are closely spaced, the more accurate 
clustering results by using the CP will improve the performance of a particle PHD filter 
directly. 
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