• Title/Summary/Keyword: Novel structure

Search Result 2,491, Processing Time 0.028 seconds

Angle-resolved photoemission study on novel properties of graphene (각 분해능 광전자 분광기법을 활용한 그래핀 물성 연구)

  • Hwang, Choongyu;Kang, Minhee
    • Vacuum Magazine
    • /
    • v.5 no.2
    • /
    • pp.4-9
    • /
    • 2018
  • The research field of graphene has been rapidly expanded ever since its first experimental realization of Dirac fermions in 2005, due to the fundamental importance in physics as a new paradigm for relativistic condensed matter physics as well as a potential building block for next generation device applications. Most of the intriguing physics observed so far in graphene can be traced to its peculiar electron band structure, which is in analogy with relativistic Dirac fermions. This article reviews recent progress in graphene research that has been done using angle-resolved photoemission technique, the most direct probing tool of the electron band structure. In particular, we discuss a few examples of novel properties so far explored ranging from the basic electron band structure to complicated many-body interactions.

A Novel LC Device Associated with Optically Compensated Splay Structure (광학적 자기 보상 스플레이 구조를 갖는 새로운 액정 소자)

  • 김승재;이종문;이승희
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.5
    • /
    • pp.536-540
    • /
    • 2004
  • A novel nematic liquid crystal (LC) cell with splay structure exhibiting wide viewing angle, fast response time and high transmittance at the same time has been developed. With rubbed homeotropic alignment in parallel directions, the device shows bend alignment in the absence of vertical electric field. However, with applied high voltage in a pulse form, the LC shows a optically compensated splay (OCS) orientation such that the mid-director is parallel to a substrate and at both surfaces the LCs are aligned vertically in parallel direction. In the device, the birefringence of the cell becomes tunable with applying voltage, i.e., the amount of light passed through the cell can be controlled by controlling the orientation of the LC. Since the OCS cell has a self-compensation structure such that the LC has a mirror symmetry along the mid-director, the device shows a wide viewing angle with only a single domain and a fast response time.

Numerical study on Floor Response Spectrum of a Novel High-rise Timber-concrete Structure

  • Xiong, Haibei;Zheng, Yingda;Chen, Jiawei
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.3
    • /
    • pp.273-282
    • /
    • 2020
  • An innovative high-rise timber-concrete hybrid structure was proposed in previous research, which is composed of the concrete frame-tube structure and the prefabricated timber modules as main structure and substructures, respectively. Considering that the timber substructures are built on the concrete floors at a different height, the floor response spectrum is more effective in estimating the seismic response of substructures. In this paper, the floor response spectra of the hybrid structure with different structural parameters were calculated using dynamic time-history analysis. Firstly, one simplified model that can well predict the seismic response of the hybrid structure was proposed and validated. Then the construction site, the mass ratio and the frequency ratio of the main-sub structure, and the damping ratio of the substructures were discussed. The results demonstrate that the peaks of the floor response spectra usually occur near the vibration periods of the whole structure, among which the first two peaks stand out; In most cases, the acceleration amplification effect on substructures tends to be more evident when the construction site is farther from the fault rupture; On the other hand, the acceleration response of substructures can be effectively reduced with an appropriate increase in the mass ratio of the main-sub structure and the damping ratio of the substructures; However, the frequency ratio of the main-sub structure has no discernible effect on the floor response spectra. This study investigates the characteristics of the floor response spectrum of the novel timber-concrete structure, which supports the future applications of such hybrid structure in high-rise buildings.

A Small Monopole Antenna with Novel Impedance Matching Structure (새로운 임피던스 매칭 구조를 가지는 소형 모노폴 안테나)

  • Kim, Dong-Jin;Min, Kyeong-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.7
    • /
    • pp.828-833
    • /
    • 2007
  • A small monopole antenna with a novel impedance matching structure is proposed in this paper. The proposed antenna is designed for W-LAN(IEEE 802.11b). The antenna design concept is based on a ${\lambda}/8$ folded monopole antenna with a self-impedance matching structure. The size of the proposed antenna is smaller than the resonant length, thus the impedance at the terminal of the antenna becomes very capacitive. To compensate fur this impedance mismatching, the proposed antenna employs a novel self-impedance matching structure. The self-impedance matching structure is located on the top of the antenna; it improves the impedance matching and ultimately the efficiency of the antenna. The measured results of the proposed antenna show reasonable agreement with prediction.

Novel GPR43 Agonists Exert an Anti-Inflammatory Effect in a Colitis Model

  • Park, Bi-Oh;Kang, Jong Soon;Paudel, Suresh;Park, Sung Goo;Park, Byoung Chul;Han, Sang-Bae;Kwak, Young-Shin;Kim, Jeong-Hoon;Kim, Sunhong
    • Biomolecules & Therapeutics
    • /
    • v.30 no.1
    • /
    • pp.48-54
    • /
    • 2022
  • GPR43 (also known as FFAR2), a metabolite-sensing G-protein-coupled receptor stimulated by short-chain fatty acid (SCFA) ligands is involved in innate immunity and metabolism. GPR43 couples with Gαi/o and Gαq/11 heterotrimeric proteins and is capable of decreasing cyclic AMP and inducing Ca2+ flux. The GPR43 receptor has additionally been shown to bind β-arrestin 2 and inhibit inflammatory pathways, such as NF-κB. However, GPR43 shares the same ligands as GPR41, including acetate, propionate, and butyrate, and determination of its precise functions in association with endogenous ligands, such as SCFAs alone, therefore remains a considerable challenge. In this study, we generated novel synthetic agonists that display allosteric modulatory effects on GPR43 and downregulate NF-κB activity. In particular, the potency of compound 187 was significantly superior to that of pre-existing compounds in vitro. However, in the colitis model in vivo, compound 110 induced more potent attenuation of inflammation. These novel allosteric agonists of GPR43 clearly display anti-inflammatory potential, supporting their clinical utility as therapeutic drugs.

Dynamic Power Management Structure for Energy Harvesting Pervasive Computing System

  • Bae, Hyeoungho;Kim, Dong-Sung
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.1 no.1
    • /
    • pp.1-7
    • /
    • 2006
  • In this paper, a novel power management structure for an energy harvesting pervasive system is proposed. The system considers the power state of each subsystem to assign proper power sources. The switch matrix structure utilizes each power source to reduce the peak current of the battery. The power management structure can be interfaced to an embedded system power supply without significant design change.

  • PDF

A Design of 5.8 ㎓ Oscillator using the Novel Defected Ground Structure

  • Joung, Myoung-Sub;Park, Jun-Seok;Lim, Jae-Bong;Cho, Hong-Goo
    • Journal of electromagnetic engineering and science
    • /
    • v.3 no.2
    • /
    • pp.118-125
    • /
    • 2003
  • This paper presents a 5.8-㎓ oscillator that uses a novel defected ground structure(DGS), which is etched on the metallic ground plane. As the suggested defected ground structure is the structure for mounting an active device, it is the roles of a feedback loop inducing a negative resistance as well as a frequency-selective circuit. Applying the feedback loop between the drain and the gate of a FET device produces precise phase conversion in the feedback loop. The equivalent circuit parameters of the DGS are extracted by using a three-dimensional EM simulation ,md simple circuit analysis method. In order to demonstrate a new DGS oscillator, we designed the oscillator at 5.8-㎓. The experimental results show 4.17 ㏈m output power with over 22 % dc-to-RF power efficiency and - 85.8 ㏈c/Hz phase noise at 100 KHz offset from the fundamental carrier at 5.81 ㎓.

Bacillus subtilis HmoB is a heme oxygenase with a novel structure

  • Park, Seong-Hun;Choi, Sa-Rah;Choe, Jung-Woo
    • BMB Reports
    • /
    • v.45 no.4
    • /
    • pp.239-241
    • /
    • 2012
  • Iron availability is limited in the environment and most bacteria have developed a system to acquire iron from host hemoproteins. Heme oxygenase plays an important role by degrading heme group and releasing the essential nutrient iron. The structure of Bacillus subtilis HmoB was determined to 2.0 ${\AA}$ resolution. B. subtilis HmoB contains a typical antibiotic biosynthesis monooxygenase (ABM) domain that spans from 71 to 146 residues and belongs to the IsdG family heme oxygenases. Comparison of HmoB and IsdG family proteins showed that the C-terminal region of HmoB has similar sequence and structure to IsdG family proteins and contains conserved critical residues for heme degradation. However, HmoB is distinct from other IsdG family proteins in that HmoB is about 60 amino acids longer in the N-terminus and does not form a dimer whereas previously studied IsdG family heme oxygenases form functional homodimers. Interestingly, the structure of monomeric HmoB resembles the dimeric structure of IsdG family proteins. Hence, B. subtilis HmoB is a heme oxygenase with a novel structural feature.

Tunable Bandpass 4th Order SC Sigma-delta Modulator with Novel Structure (새로운 구조의 Tunable 4차 SC Bandpass Sigma-Delta 변조기)

  • Kim, Jae-Bung;Yoo, Nam-Hee;Cho, Seong-Ik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.2
    • /
    • pp.446-450
    • /
    • 2011
  • Tunable SC(Switched Capacitor) bandpass ${\Sigma}-{\Delta}$(Sigma-Delta) modulator used in wireless system receiver occurs a signal attenuation according to tuning of center frequency in signal bandwidth. In this paper, tunable bandpass 4th order SC bandpass ${\Sigma}-{\Delta}$ modulator with novel structure is proposed for rejection of signal attenuation in signal bandwidth. The existing structure uses a ten variable coefficient values for rejection of signal reduction in the modulator. But the proposed structure only use a two variable coefficient values for rejection of signal attenuation in the modulator. Also, an adder and comparator is replaced with a comparator having 4 inputs in the modulator. Therefore, the existing structure has one more OP-AMP. The purposed modulator was designed in $0.18\;{\mu}m$ CMOS technology. The resolution of the modulator within 310 kHz bandwidth and 40 MHz sampling frequency under 6.67 MHz, 10 MHz and 13.33 MHz intermediate frequency are over 10 bit.

Multi-view Clustering by Spectral Structure Fusion and Novel Low-rank Approximation

  • Long, Yin;Liu, Xiaobo;Murphy, Simon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.3
    • /
    • pp.813-829
    • /
    • 2022
  • In multi-view subspace clustering, how to integrate the complementary information between perspectives to construct a unified representation is a critical problem. In the existing works, the unified representation is usually constructed in the original data space. However, when the data representation in each view is very diverse, the unified representation derived directly in the original data domain may lead to a huge information loss. To address this issue, different to the existing works, inspired by the latest revelation that the data across all perspectives have a very similar or close spectral block structure, we try to construct the unified representation in the spectral embedding domain. In this way, the complementary information across all perspectives can be fused into a unified representation with little information loss, since the spectral block structure from all views shares high consistency. In addition, to capture the global structure of data on each view with high accuracy and robustness both, we propose a novel low-rank approximation via the tight lower bound on the rank function. Finally, experimental results prove that, the proposed method has the effectiveness and robustness at the same time, compared with the state-of-art approaches.