DOI QR코드

DOI QR Code

Angle-resolved photoemission study on novel properties of graphene

각 분해능 광전자 분광기법을 활용한 그래핀 물성 연구

  • Published : 2018.06.30

Abstract

The research field of graphene has been rapidly expanded ever since its first experimental realization of Dirac fermions in 2005, due to the fundamental importance in physics as a new paradigm for relativistic condensed matter physics as well as a potential building block for next generation device applications. Most of the intriguing physics observed so far in graphene can be traced to its peculiar electron band structure, which is in analogy with relativistic Dirac fermions. This article reviews recent progress in graphene research that has been done using angle-resolved photoemission technique, the most direct probing tool of the electron band structure. In particular, we discuss a few examples of novel properties so far explored ranging from the basic electron band structure to complicated many-body interactions.

Keywords

References

  1. P. R. Wallace, Phys. Rev. 71, 622 (1947). https://doi.org/10.1103/PhysRev.71.622
  2. N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966). https://doi.org/10.1103/PhysRevLett.17.1133
  3. Y. Zhang et al., Nature 438, 201 (2005). https://doi.org/10.1038/nature04235
  4. K. S Novoselov et al., Nature 438, 197 (2005). https://doi.org/10.1038/nature04233
  5. A. H. Castro Neto et al., Rev. Mod. Phys. 81, 110 (2009).
  6. C. Hwang et al., Phys. Rev. B 84, 125422 (2011). https://doi.org/10.1103/PhysRevB.84.125422
  7. T. Ohta et al., Phys. Rev. Lett. 98, 206802 (2007). https://doi.org/10.1103/PhysRevLett.98.206802
  8. T. Ohta et al., Science 313, 951 (2006). https://doi.org/10.1126/science.1130681
  9. S. Y. Zhou et al., Nat. Mater. 6, 770 (2007). https://doi.org/10.1038/nmat2003
  10. A. Bostwick et al., Nat. Phys. 3, 36 (2007).
  11. A. Bostwick et al., Science 328, 999 (2010). https://doi.org/10.1126/science.1186489
  12. J. Lischner et al., Phys. Rev. Lett. 110, 146801 (2013). https://doi.org/10.1103/PhysRevLett.110.146801
  13. A. Damascelli et al., Rev. Mod. Phys. 75, 474 (2003).
  14. E. H. Hwang et al., Phys. Rev. Lett. 99, 226801 (2007). https://doi.org/10.1103/PhysRevLett.99.226801
  15. C. Hwang et al., Sci. Rep. 2, 590 (2012). https://doi.org/10.1038/srep00590
  16. H. Ryu et al., Nano Lett. 17, 5914 (2017). https://doi.org/10.1021/acs.nanolett.7b01650
  17. J. Crossno et al., Science 351, 1058 (2016). https://doi.org/10.1126/science.aad0343
  18. G. Csanyi et al., Nat. Phys. 1, 42 (2005). https://doi.org/10.1038/nphys119
  19. M. Calandra and F. Mauri, Phys. Rev. B 76, 205411 (2007). https://doi.org/10.1103/PhysRevB.76.205411
  20. D. A. Siegel et al., New J. Phys. 14, 095006 (2012). https://doi.org/10.1088/1367-2630/14/9/095006
  21. B. M. Ludbrook et al., Proc. Natl. Acad. Sci. 112, 11795 (2015). https://doi.org/10.1073/pnas.1510435112
  22. C. Hwang et al., Phys. Rev. B 90, 115417 (2014) https://doi.org/10.1103/PhysRevB.90.115417
  23. A. V. Fedorov et al., Nat. Commun. 5, 3257 (2014). https://doi.org/10.1038/ncomms4257
  24. O. V. Yazyev, Rep. Prog. Phys. 73, 056501 (2010). https://doi.org/10.1088/0034-4885/73/5/056501
  25. J. -H. Chen et al., Nat. Phys. 7, 535 (2011). https://doi.org/10.1038/nphys1962
  26. R. R. Nair et al., Nat. Phys. 8, 199 (2012). https://doi.org/10.1038/nphys2183
  27. T. G. Rappoport et al., EPL 96, 27010 (2011). https://doi.org/10.1209/0295-5075/96/27010
  28. C. Hwang et al., Sci. Rep. 6, 21460 (2016). https://doi.org/10.1038/srep21460
  29. A. Varykhalov et al., Phys. Rev. Lett. 101, 157601 (2008). https://doi.org/10.1103/PhysRevLett.101.157601
  30. D. Marchenko et al., Nat. Commun. 3, 1232 (2012). https://doi.org/10.1038/ncomms2227