• Title/Summary/Keyword: Novel marine bacterium

Search Result 45, Processing Time 0.019 seconds

Characterization of Agarase from an Isolated Marine Bacterium, Simiduia sp. SH-1 (해양성 Simiduia sp. SH-1 균주의 분리 및 한천분해효소의 특성조사)

  • Lee, Sol-Ji;Oh, Soo-Jeong;Lee, Dong-Geun;Lee, Sang-Hyeon
    • Journal of Life Science
    • /
    • v.25 no.11
    • /
    • pp.1273-1279
    • /
    • 2015
  • Agarase from a novel agar-degrading bacterium isolated from seawater in Namhae at Gyeongsangnamdo province of Korea was characterized. The SH-1 strain was selected from thousands of colonies on Marine agar 2216 media. Almost full 16S rRNA gene sequence of the agarolytic SH-1 strain showed 99% similarity with that of bacteria of Simiduia genus and named as Simiduia sp. SH-1. Agarase production was growth related, and activity was declined from stationary phase. Secreted agarase was prepared from culture media and characterized. It showed maximum activity of 698.6 units/L at pH 7.0 and 30℃ in 20 mM Tris-HCl buffer. Agarase activity decreased as the temperature increased from an optimum of 30℃, with 90% and 75% activity at 40℃ and 50℃, respectively. Agarase was not heat resistant. Slightly lower agarase activity was observed at pH 6.0 than at pH 7.0, without statistical difference, and 80% and 75% activity were observed at pH 5.0 and 8.0, respectively. Neoagarotetraose and neoagarobiose were the main final products of agarose, indicating that it is β-agarase. Simiduia sp. SH-1 and its β-agarase would be useful for the industrial production of neoagarotetraose and neoagarobiose, which have a whitening effect on skin, delaying starch degradation, and inhibiting bacterial growth.

Labrenzia callyspongiae sp. nov., Isolated from Marine Sponge Callyspongia elegans in Jeju Island

  • Park, So Hyun;Kim, Ji Young;Heo, Moon Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.12
    • /
    • pp.1969-1974
    • /
    • 2019
  • A Gram-staining-negative, aerobic, light brown pigment bacterium, designated strain CE80T was isolated from marine sponge Callyspongia elegans in Jeju Island, Republic of Korea. Strain CE80T grew optimally at 25℃, in the range of pH 5.0-11.0 (optimum 7.0-8.0), and with 1.0-5.0% NaCl (optimum 1-3% (w/v)). Phylogenetic analysis based on the 16S rRNA gene sequence showed that strain CE80T belonged to the genus Labrenzia and was closely related to L. suaedae YC6927T (98.3%), L. alexandrii DFL-11T (96.6%), L. aggregata IAM 12614T (96.6%) L. marina mano18T (96.5%) and L. alba CECT 5094T (96.2%). The major fatty acids of strain CE80T were C18:1 ω7c, and summed feature. The polar lipids were diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylmonomethylethanolamin, one unidentified aminolipid, one phospholipid and four unidentified lipids. The DNA G+C content of strain CE80T was 55.9 mol%. The major respiratory quinone was Q-10. DNA-DNA relatedness between strain CE80T and L. suaedae YC6927T was 56.1±2.8%. On the basis of physiological and biochemical characterization and phylogenetic and chemotaxonomic analysis, strain CE80T represents a novel species of the Labrenzia, for which the name Labrenzia callyspongiae sp. nov., is proposed. The type strain is CE80T (=KCTC 42849T =JCM 31309T).

Biodegradation of Crude oil by Marine Bacterium Pseudomonas sp. CHCS-2 and Composition of the Biosurfactant (해양세균 Pseudomonas sp. CHCS-2에 의한 원유분해 및 생물유화제의 성분 분석)

  • 김학주;김봉조;하순득;황선희;공재열
    • KSBB Journal
    • /
    • v.14 no.2
    • /
    • pp.192-197
    • /
    • 1999
  • marine bacterium Pseudomonas sp. CHCS-2 produced the biosurfactant in the culture broth which contained 2%(w/v) arabian light crude oil and the productivity of biosurfactant was increased with the addition of glucose. The crude oil in the culture broth was degraded by this strain and carbon chain of $_nC_{12}~_nC_{22}$ was completely degradaded during the incubation for 196 h. The crude biosurfactant was purified by Amberlite XAD-7, Sepharose CL-4B and DEAE-Sepharose CL-6B column chromatography. Therefore, 0.21g/L of the purified biosurfactnat was obtained. The purified biosurfactant was a type of lipoprotein and the molecular weight was estimated as 67kDa by SDS-PAGE. The lipid composition was identified as octadecanoic acid by gas chromatography/mass spectrometry. And then, the N-terminal amino acid sequence of the protein was determined as Ser-Val-lle-Asn-Thr-lle-X-Met-lle-Gly-Gln-Gln- and the sequence did not show homology to any other known lipoprotein. Therefore, the purified lopoprotein was predicted novel biosurfactant.

  • PDF

A Novel Glycosyl Hydrolase Family 16 β-Agarase from the Agar-Utilizing Marine Bacterium Gilvimarinus agarilyticus JEA5: the First Molecular and Biochemical Characterization of Agarase in Genus Gilvimarinus

  • Lee, Youngdeuk;Jo, Eunyoung;Lee, Yeon-Ju;Hettiarachchi, Sachithra Amarin;Park, Gun-Hoo;Lee, Su-Jin;Heo, Soo-Jin;Kang, Do-Hyung;Oh, Chulhong
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.5
    • /
    • pp.776-783
    • /
    • 2018
  • The agarase gene gaa16a was identified from a draft genome sequence of Gilvimarinus agarilyticus JEA5, an agar-utilizing marine bacterium. Recently, three agarase-producing bacteria, G. chinensis, G. polysaccharolyticus, and G. agarilyticus, in the genus Gilvimarinus were reported. However, there have been no reports of the molecular characteristics and biochemical properties of these agarases. In this study, we analyzed the molecular characteristics and biochemical properties of agarases in Gilvimarinus. Gaa16A comprised a 1,323-bp open reading frame encoding 441 amino acids. The predicted molecular mass and isoelectric point were 49 kDa and 4.9, respectively. The amino acid sequence of Gaa16A showed features typical of glycosyl hydrolase family 16 (GH16) ${\beta}$-agarases, including a GH16 domain, carbohydrate-binding region (RICIN domain), and signal peptide. Recombinant Gaa16A (excluding the signal peptide and carbohydrate-binding region, rGaa16A) was expressed as a fused protein with maltose-binding protein at its N-terminus in Escherichia coli. rGaa16A had maximum activity at $55^{\circ}C$ and pH 7.0 and 103 U/mg of specific activity in the presence of 2.5 mM $CaCl_2$. The enzyme hydrolyzed agarose to yield neoagarotetraose as the main product. This enzyme may be useful for industrial production of functional neoagaro-oligosaccharides.

Characterization of α-agarase from Alteromonas sp. SH-1 (Alteromonas sp. SH-1균 유래의 α-agarase의 특성조사)

  • Lee, Sol-Ji;Shin, Da-Young;Kim, Jae-Deog;Lee, Dong-Geun;Lee, Sang-Hyeon
    • KSBB Journal
    • /
    • v.31 no.2
    • /
    • pp.113-119
    • /
    • 2016
  • A novel agar-degrading marine bacterium, SH-1 strain, was isolated from seashore of Namhae at Gyeongnam province, Korea. The SH-1 strain exhibited 98% similarity with Alteromonas species based on 16S rDNA sequencing and named as Alteromonas sp. SH-1. Alteromonas sp. SH-1 showed agarase activity of 348.3 U/L (1.67 U/mg protein). The molecular masses of the enzymes were predicted as about 85 kDa and 110 kDa by SDS-PAGE and zymogram. The enzymatic activity was optimal at $30^{\circ}C$ and the relative agarase activity was decreased as temperature increase from $30^{\circ}C$ and thus about 90% and 70% activities were shown at $40^{\circ}C$ and $50^{\circ}C$, respectively. The optimum pH was 6.0 for agarase activity in 20 mM Tris-HCl buffer and activities were less than 70% and 85% activity at pH 5.0 and pH 7.0, respectively, compared with that at pH 6. Agarase activity has remained over 90% at $20^{\circ}C$ after 1.5 hour exposure at this temperature. However, its activity was less than 60% at $30^{\circ}C$ after 0.5 h exposure at this temperature. The enzymes produced agarooligosaccharides such as agaropentaose and agarotriose from agarose, indicating that the agarases are ${\alpha}$-agarases. Thus, Alteromonas sp. SH-1 and its agarases would be useful for the industrial production of agarooligosaccharides which are known as having anticancer and antioxidation activities.

Purification and Properties of a Novel Extracellular Agarase from Marine Bacterium, Sphingomonas paucimobilis AS-1 (해양미생물 Sphingomonas paucimobilis AS-1이 생산하는 새로운 extracelluar agarase의 정제 및 특성)

  • Jung, Il-Sun;Kim, Yu-Jung;Song, Hyo-Ju;Gal, Sang-Wan;Choi, Young-Ju
    • Journal of Life Science
    • /
    • v.18 no.1
    • /
    • pp.103-108
    • /
    • 2008
  • An agar-degrading marine bacterium, strain AS-1 was isolated from the seawater. The strain AS-1 was identified as Sphingomonas paucimobilis (90% probability) by VITEK. The optimum medium for agarase activity of the isolated strain was determined to be marine medium, marine broth 2216 containing 0.1% agar as carbon source. An extracellular agarase was purified 104-fold from the culture supernatant by ammonium sulfate precipitation, ion exchange chromatography and gel filtration methods. The molecular weight of the purified enzyme was estimated to be 80 kDa by SDS-PAGE. The optimum pH and temperature for activity were 7.0 and $40^{\circ}C$, respectively. Antioxidative activity of the strain AS- was 72% in the supernatant cultured for 12 h. The culture supernatant of the strain AS-1 showed antibacterial activity against bacteria causing putrefaction and food poisoning such as Escherichia coli, Staphylococcus aureus and Proteus vulgaris. However, the cell growth of the lactic aicd forming strain, Lactobacillus plantarium was promoted by the treatment of 10% culture supernatant of an agar-degrading strain.

Cloning, Expression, and Characterization of Superoxide dismutase from Aquifex Pyophilus, a Hyperthermophilic Bacteria

  • Rhim, Jae-Hwan;Yesun Han;Kim, Sung-Hou;Yunje Cho
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1996.07a
    • /
    • pp.30-30
    • /
    • 1996
  • A suproxide dismutase gene of Aquifex pyroprolus, a novel marine hypenhermophilic bacterium, was cloned, expressed, and characterized. The SOD of A pyrophilus (ApSOD) is an iron-containing homo-oligomeric protein with a monomeric molecular weight of 24.2 kDa. the amino acid sequence is similar to those of known Mn- and Fe-SODs from thermophilic archaea, and metal binding residues in all SOD sequences from different species are also conserved in A. pyrophilus SOD. (omitted)

  • PDF

Isolation and Characterization of a Marine Bacterium Producing Thermotolerant Agarase (내열성 한천분해효소를 생산하는 해양세균의 분리 및 특성)

  • Park Ceun-Tae;Lee Dong-Ceun;Kim Nam Young;Lee Eo-Jin;Jung Jong-Ceun;Lee Jae-Hwa;Heo Moon-Soo;Lee Jung-Hyun;Kim Sang-Jin;Lee Sang-Hyeon
    • Journal of Life Science
    • /
    • v.15 no.6 s.73
    • /
    • pp.884-888
    • /
    • 2005
  • An agar-degrading bacterium was isolated from north-eastern sea of Jeju island and cultured in marine agar 2216 media. Biochemical and morphologicl characteristics and 165 rRNA gene revealed that isolated strain was member of Agarivorans genus, and named Agarivorans sp. JA-1. Agarase was produced as growth-related and expressed regardless of agar presence. Optimal pH was 8 at 50 mM Clycine-NaOH buffer, and activity was maximum at $40^{\circ}C$E Enzymatic activity was maintained over $80\%$ at $60^{\circ}C$t and $70\%$ at $80^{\circ}C$ which is thermotolerant. Hence isolated novel Agarivorans sp. JA-1 strain and its beta-agarase could be used for the production of functional oligosaccharide from agar in solution state.

Rheinheimera aquatica sp. nov., Antimicrobial Activity-Producing Bacterium Isolated from Freshwater Culture Pond

  • Chen, Wen-Ming;Lin, Chang-Yi;Young, Chiu-Chung;Sheu, Shih-Yi
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.10
    • /
    • pp.1386-1392
    • /
    • 2010
  • A bacterial strain designated GR5$^T$, previously isolated from a freshwater culture pond in Taiwan while screening for bacteria for antimicrobial compounds, was characterized using a polyphasic taxonomic approach. Strain GR5$^T$ was found to be Gram-negative, aerobic, greenish-yellow colored, rod-shaped, and motile by means of a single polar flagellum. Growth occurred at $10-40^{\circ}C$ (optimum, $35^{\circ}C$), pH 7.0-8.0 (optimum pH 8.0), and with 0-2.0% NaCl (optimum, 0.5-1.0%). The major fatty acids were $C_{16:1}{\omega}7c$(36.3%), $C_{16:0}$(16.6%), $C_{12:0}$ 3-OH (12.5%), and $C_{18:1}{\omega}7c$(9.1%). The major respiratory quinone was Q-8, and the DNA G+C content of the genomic DNA was 51.9 mol%. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain GR5$^T$ belongs to the genus Rheinheimera, where its most closely related neighbors are Rheinheimera texasensis A62-14B$^T$ and Rheinheimera tangshanensis JA3-B52$^T$ with sequence similarities of 98.1% and 97.5%, respectively, and the sequence similarities to any other recognized species within Gammaproteobacteria are less than 96.5%. The mean level of DNA-DNA relatedness between strain GR5$^T$ and R. texasensis A62-14B$^T$, the strain most closely related to the isolate, was $26.5{\pm}7.6%$. Therefore, based on the phylogenetic and phenotypic data, strain GR5$^T$ should be classified as a novel species, for which the name Rheinheimera aquatica sp. nov. is proposed. The type strain is GR5$^T$ (=BCRC 80081$^T$=LMG 25379$^T$).

Biochemical Characterization of a Novel GH86 β-Agarase Producing Neoagarohexaose from Gayadomonas joobiniege G7

  • Lee, Yeong Rim;Jung, Subin;Chi, Won-Jae;Bae, Chang-Hwan;Jeong, Byeong-Chul;Hong, Soon-Kwang;Lee, Chang-Ro
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.2
    • /
    • pp.284-292
    • /
    • 2018
  • A novel ${\beta}$-agarase, AgaJ5, was identified from an agar-degrading marine bacterium, Gayadomonas joobiniege G7. It belongs to the glycoside hydrolase family 86 and is composed of 805 amino acids with a 30-amino-acid signal peptide. Zymogram analysis showed that purified AgaJ5 has agarase activity. The optimum temperature and pH for AgaJ5 activity were determined to be $30^{\circ}C$ and 4.5, respectively. AgaJ5 was an acidic ${\beta}$-agarase that had strong activity at a narrow pH range of 4.5-5.5, and was a cold-adapted enzyme, retaining 40% of enzymatic activity at $10^{\circ}C$. AgaJ5 required monovalent ions such as $Na^+$ and $K^+$ for its maximum activity, but its activity was severely inhibited by several metal ions. The $K_m$ and $V_{max}$ of AgaJ5 for agarose were 8.9 mg/ml and 188.6 U/mg, respectively. Notably, thin-layer chromatography, mass spectrometry, and agarose-liquefication analyses revealed that AgaJ5 was an endo-type ${\beta}$-agarase producing neoagarohexaose as the final main product of agarose hydrolysis. Therefore, these results suggest that AgaJ5 from G. joobiniege G7 is a novel endo-type neoagarohexaose-producing ${\beta}$-agarase having specific biochemical features that may be useful for industrial applications.