DOI QR코드

DOI QR Code

A Novel Glycosyl Hydrolase Family 16 β-Agarase from the Agar-Utilizing Marine Bacterium Gilvimarinus agarilyticus JEA5: the First Molecular and Biochemical Characterization of Agarase in Genus Gilvimarinus

  • Received : 2017.09.21
  • Accepted : 2018.02.26
  • Published : 2018.05.28

Abstract

The agarase gene gaa16a was identified from a draft genome sequence of Gilvimarinus agarilyticus JEA5, an agar-utilizing marine bacterium. Recently, three agarase-producing bacteria, G. chinensis, G. polysaccharolyticus, and G. agarilyticus, in the genus Gilvimarinus were reported. However, there have been no reports of the molecular characteristics and biochemical properties of these agarases. In this study, we analyzed the molecular characteristics and biochemical properties of agarases in Gilvimarinus. Gaa16A comprised a 1,323-bp open reading frame encoding 441 amino acids. The predicted molecular mass and isoelectric point were 49 kDa and 4.9, respectively. The amino acid sequence of Gaa16A showed features typical of glycosyl hydrolase family 16 (GH16) ${\beta}$-agarases, including a GH16 domain, carbohydrate-binding region (RICIN domain), and signal peptide. Recombinant Gaa16A (excluding the signal peptide and carbohydrate-binding region, rGaa16A) was expressed as a fused protein with maltose-binding protein at its N-terminus in Escherichia coli. rGaa16A had maximum activity at $55^{\circ}C$ and pH 7.0 and 103 U/mg of specific activity in the presence of 2.5 mM $CaCl_2$. The enzyme hydrolyzed agarose to yield neoagarotetraose as the main product. This enzyme may be useful for industrial production of functional neoagaro-oligosaccharides.

Keywords

References

  1. Chi WJ, Chang YK, Hong SK. 2012. Agar degradation by microorganisms and agar-degrading enzymes. Appl. Microbiol. Biotechnol. 94: 917-930. https://doi.org/10.1007/s00253-012-4023-2
  2. Fu XT, Kim SM. 2010. Agarase: review of major sources, categories, purification method, enzyme characteristics and applications. Mar. Drugs 8: 200-218. https://doi.org/10.3390/md8010200
  3. Araki C. 1956. Structure of the agarose constituent of agar- agar. Bull. Chem. Soc. Jpn. 29: 543-544. https://doi.org/10.1246/bcsj.29.543
  4. Mai Z, Su H, Zhang S. 2016. Isolation and characterization of a glycosyl hydrolase family 16 beta-agarase from a mangrove soil metagenomic library. Int. J. Mol. Sci. 17: E1360. https://doi.org/10.3390/ijms17081360
  5. Kobayashi R, Takisada M, Suzuki T, Kirimura K, Usami S. 1997. Neoagarobiose as a novel moisturizer with whitening effect. Biosci. Biotechnol. Biochem. 61: 162-163. https://doi.org/10.1271/bbb.61.162
  6. Yun EJ, Lee S, Kim JH, Kim BB, Kim HT, Lee SH, et al. 2013. Enzymatic production of 3,6-anhydro-L-galactose from agarose and its purification and in vitro skin whitening and anti-inflammatory activities. Appl. Microbiol. Biotechnol. 97: 2961-2970. https://doi.org/10.1007/s00253-012-4184-z
  7. Yoshizawa Y, Ametani A, Tsunehiro J, Nomura K, Itoh M, Fukui F, et al. 1995. Macrophage stimulation activity of the polysaccharide fraction from a marine alga (Porphyra yezoensis): structure-function relationships and improved solubility. Biosci. Biotechnol. Biochem. 59: 1933-1937. https://doi.org/10.1271/bbb.59.1933
  8. Fernandez LE, Valiente OG, Mainardi V, Bello JL, Velez H, Rosado A. 1989. Isolation and characterization of an antitumor active agar-type polysaccharide of Gracilaria dominguensis. Carbohydr. Res. 190: 77-83. https://doi.org/10.1016/0008-6215(89)84148-5
  9. Hu B, Gong Q, Wang Y, Ma Y, Li J, Yu W. 2006. Prebiotic effects of neoagaro-oligosaccharides prepared by enzymatic hydrolysis of agarose. Anaerobe 12: 260-266. https://doi.org/10.1016/j.anaerobe.2006.07.005
  10. Jang M-K, Lee OKH, Yoo KH, Lee D-G, Lee S-H. 2007. Secretory overexpression of ${\beta}$-agarase in Bacillus subtilis and antibacterial activity of enzymatic products. J. Life Sci. 17: 1601-1604. https://doi.org/10.5352/JLS.2007.17.11.1601
  11. Fu XT, Pan CH, Lin H, Kim SM. 2009. Gene cloning, expression, and characterization of a beta-agarase, agaB34, from Agarivorans albus YKW-34. J. Microbiol. Biotechnol. 19: 257-264.
  12. Leon O, Quintana L, Peruzzo G, Slebe JC. 1992. Purification and properties of an extracellular agarase from Alteromonas sp. strain C-1. Appl. Environ. Microbiol. 58: 4060-4063.
  13. Ha JC, Kim GT, Kim SK, Oh TK, Yu JH, Kong IS. 1997. beta-agarase from Pseudomonas sp. W7: purification of the recombinant enzyme from Escherichia coli and the effects of salt on its activity. Biotechnol. Appl. Biochem. 26: 1-6.
  14. Lee S, Park J, Yoon S, Kim J, Kong I. 2000. Sequence analysis of a beta-agarase gene (pjaA) from Pseudomonas sp. isolated from marine environment. J. Biosci. Bioeng. 89: 485-488. https://doi.org/10.1016/S1389-1723(00)89101-X
  15. Sugano Y, Matsumoto T, Kodama H, Noma M. 1993. Cloning and sequencing of agaA, a unique agarase 0107 gene from a marine bacterium, Vibrio sp. strain JT0107. Appl. Environ. Microbiol. 59: 3750-3756.
  16. Sugano Y, Terada I, Arita M, Noma M, Matsumoto T. 1993. Purification and characterization of a new agarase from a marine bacterium, Vibrio sp. strain JT0107. Appl. Environ. Microbiol. 59: 1549-1554.
  17. Oh C, Nikapitiya C, Lee Y, Whang I, Kim SJ, Kang DH, et al. 2010. Cloning, purification and biochemical characterization of beta agarase from the marine bacterium Pseudoalteromonas sp. AG4. J. Ind. Microbiol. Biotechnol. 37: 483-494. https://doi.org/10.1007/s10295-010-0694-9
  18. Suzuki H, Sawai Y, Suzuki T, Kawai K. 2003. Purification and characterization of an extracellular ${\beta}$-agarase from Bacillus sp. MK03. J. Biosci. Bioeng. 95: 328-334. https://doi.org/10.1016/S1389-1723(03)80063-4
  19. Li J, Sha Y, Seswita-Zilda D, Hu Q, He P. 2014. Purification and characterization of thermostable agarase from Bacillus sp. BI-3, a thermophilic bacterium isolated from hot spring. J. Microbiol. Biotechnol. 24: 19-25. https://doi.org/10.4014/jmb.1308.08055
  20. Ohta Y, Hatada Y, Nogi Y, Li Z, Ito S, Horikoshi K. 2004. Cloning, expression, and characterization of a glycoside hydrolase family 86 beta-agarase from a deep-sea Microbulbifer- like isolate. Appl. Microbiol. Biotechnol. 66: 266-275. https://doi.org/10.1007/s00253-004-1757-5
  21. Kim DK, Jang YR, Kim KH, Lee MN, Kim AR, Jo EJ, et al. 2011. Isolation and culture properties of a thermophilic agarase-producing strain, Microbulbifer sp. SD-1. Fish. Aquat. Sci. 14: 186-191.
  22. Lee Y, Oh C, De Zoysa M, Kim H, Wickramaarachchi WD, Whang I, et al. 2013. Molecular cloning, overexpression, and enzymatic characterization of glycosyl hydrolase family 16 beta-agarase from marine bacterium Saccharophagus sp. AG21 in Escherichia coli. J. Microbiol. Biotechnol. 23: 913-922. https://doi.org/10.4014/jmb.1209.09009
  23. Lakshmikanth M, Manohar S, Lalitha J. 2009. Purification and characterization of ${\beta}$-agarase from agar-liquefying soil bacterium, Acinetobacter sp., AG LSL-1. Process Biochem. 44: 999-1003. https://doi.org/10.1016/j.procbio.2009.04.025
  24. Du ZJ, Zhang DC, Liu SN, Chen JX, Tian XL, Zhang ZN, et al. 2009. Gilvimarinus chinensis gen. nov., sp. nov., an agar-digesting marine bacterium within the class Gammaproteobacteria isolated from coastal seawater in Qingdao, China. Int. J. System. Evol. Microbiol. 59: 2987-2990. https://doi.org/10.1099/ijs.0.001313-0
  25. Cheng H, Zhang S, Huo YY, Jiang XW, Zhang XQ, Pan J, et al. 2015. Gilvimarinus polysaccharolyticus sp. nov., an agar- digesting bacterium isolated from seaweed, and emended description of the genus Gilvimarinus. Int. J. System. Evol. Microbiol. 65: 562-569. https://doi.org/10.1099/ijs.0.065078-0
  26. Kim BC, Kim MN, Lee KH, Kim HS, Min SR, Shin KS. 2011. Gilvimarinus agarilyticus sp. nov., a new agar-degrading bacterium isolated from the seashore of Jeju Island. Antonie Van Leeuwenhoek 100: 67-73. https://doi.org/10.1007/s10482-011-9565-2
  27. Lee Y, Lee SJ, Park GH, Heo SJ, Umasuthan N, Kang DH, et al. 2015. Draft genome of agar-degrading marine bacterium Gilvimarinus agarilyticus JEA5. Mar. Genomics 21: 13-14. https://doi.org/10.1016/j.margen.2015.03.001
  28. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2
  29. Petersen TN, Brunak S, von Heijne G, Nielsen H. 2011. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods 8: 785-786. https://doi.org/10.1038/nmeth.1701
  30. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, et al. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947-2948. https://doi.org/10.1093/bioinformatics/btm404
  31. Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, et al. 2011. CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res. 39: D225-D229. https://doi.org/10.1093/nar/gkq1189
  32. Letunic I, Doerks T, Bork P. 2012. SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res. 40: D302-D305. https://doi.org/10.1093/nar/gkr931
  33. Finn RD, Attwood TK, Babbitt PC, Bateman A, Bork P, Bridge AJ, et al. 2017. InterPro in 2017 - beyond protein family and domain annotations. Nucleic Acids Res. 45: D190-D199. https://doi.org/10.1093/nar/gkw1107
  34. Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, et al. 2014. InterProScan 5: genome-scale protein function classification. Bioinformatics 30: 1236-1240. https://doi.org/10.1093/bioinformatics/btu031
  35. Sumner JB. 1924. The estimation of sugar in diabetic urine, using dinitrosalicylic acid. J. Biol. Chem. 62: 287-290.
  36. Swimmer C, Lehar SM, McCafferty J, Chiswell DJ, Blattler WA, Guild BC. 1992. Phage display of ricin B chain and its single binding domains: system for screening galactose- binding mutants. Proc. Natl. Acad. Sci. USA 89: 3756-3760. https://doi.org/10.1073/pnas.89.9.3756
  37. Dodd RB, Drickamer K. 2001. Lectin-like proteins in model organisms: implications for evolution of carbohydrate-binding activity. Glycobiology 11: 71R-79R. https://doi.org/10.1093/glycob/11.5.71R
  38. Cui F, Dong S, Shi X, Zhao X, Zhang XH. 2014. Overexpression and characterization of a novel thermostable beta-agarase YM01-3, from marine bacterium Catenovulum agarivorans YM01(T). Mar. Drugs 12: 2731-2747. https://doi.org/10.3390/md12052731
  39. Chi WJ, Lee CR, Dugerjonjuu S, Park JS, Kang DK, Hong SK. 2015. Biochemical characterization of a novel iron-dependent GH16 beta-agarase, AgaH92, from an agarolytic bacterium Pseudoalteromonas sp. H9. FEMS Microbiol. Lett. 362: fnv035.
  40. Zhang WW, Sun L. 2007. Cloning, characterization, and molecular application of a beta-agarase gene from Vibrio sp. strain V134. Appl. Environ. Microbiol. 73: 2825-2831. https://doi.org/10.1128/AEM.02872-06
  41. Dong J, Tamaru Y, Araki T. 2007. Molecular cloning, expression, and characterization of a beta-agarase gene, agaD, from a marine bacterium, Vibrio sp. strain PO-303. Biosci. Biotechnol. Biochem. 71: 38-46. https://doi.org/10.1271/bbb.60304
  42. Dong J, Hashikawa S, Konishi T, Tamaru Y, Araki T. 2006. Cloning of the novel gene encoding beta-agarase C from a marine bacterium, Vibrio sp. strain PO-303, and characterization of the gene product. Appl. Environ. Microbiol. 72: 6399-6401. https://doi.org/10.1128/AEM.00935-06
  43. Ma C, Lu X, Shi C, Li J, Gu Y, Ma Y, et al. 2007. Molecular cloning and characterization of a novel beta-agarase, AgaB, from marine Pseudoalteromonas sp. CY24. J. Biol. Chem. 282: 3747-3754.
  44. Jang MK, Lee DG, Kim NY, Yu KH, Jang HJ, Lee SW, et al. 2009. Purification and characterization of neoagarotetraose from hydrolyzed agar. J. Microbiol. Biotechnol. 19: 1197-1200.
  45. Zhang N, Mao X, Li RW, Hou E, Wang Y, Xue C, et al. 2017. Neoagarotetraose protects mice against intense exercise-induced fatigue damage by modulating gut microbial composition and function. Mol. Nutr. Food Res. 61: DOI: 10.1002/mnfr.201600585.
  46. Wang W, Liu P, Hao C, Wu L, Wan W, Mao X. 2017. Neoagaro-oligosaccharide monomers inhibit inflammation in LPS-stimulated macrophages through suppression of MAPK and NF-${\kappa}$B pathways. Sci. Rep. 7: 44252. https://doi.org/10.1038/srep44252

Cited by

  1. 한천분해효소의 재조합발현 : 기원, 활성조건, 분비신호와 게놈분석 등 vol.30, pp.3, 2018, https://doi.org/10.5352/jls.2020.30.3.304
  2. Implications of agar and agarase in industrial applications of sustainable marine biomass vol.104, pp.7, 2018, https://doi.org/10.1007/s00253-020-10412-6
  3. Tyrosinase-Catalyzed Phenol-Mediated Immobilization of β-Agarase on L-Lysine-Coated Magnetic Particles for the Production of Neoagarooligosaccharides from Gelidium amansii vol.8, pp.9, 2018, https://doi.org/10.1021/acssuschemeng.9b05796
  4. A Novel Agarase, Gaa16B, Isolated from the Marine Bacterium Gilvimarinus agarilyticus JEA5, and the Moisturizing Effect of Its Partial Hydrolysis Products vol.20, pp.1, 2018, https://doi.org/10.3390/md20010002