DOI QR코드

DOI QR Code

Exogenous Indole Regulates Lipopeptide Biosynthesis in Antarctic Bacillus amyloliquefaciens Pc3

  • Ding, Lianshuai (Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration) ;
  • Zhang, Song (Center for Proteomics, State Key Laboratory of Bio-Control, School of Life Science, Sun Yat-Sen University) ;
  • Guo, Wenbin (Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration) ;
  • Chen, Xinhua (Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration)
  • Received : 2017.12.06
  • Accepted : 2018.03.03
  • Published : 2018.05.28

Abstract

Bacillus amyloliquefaciens Pc3 was isolated from Antarctic seawater with antifungal activity. In order to investigate the metabolic regulation mechanism in the biosynthesis of lipopeptides in B. amyloliquefaciens Pc3, GC/MS-based metabolomics was used when exogenous indole was added. The intracellular metabolite profiles showed decreased asparagine, aspartic acid, glutamine, glutamic acid, threonine, valine, isoleucine, hexadecanoic acid, and octadecanoic acid in the indole-treated groups, which were involved in the biosynthesis of lipopeptides. B. amyloliquefaciens Pc3 exhibited a growth promotion, bacterial total protein increase, and lipopeptide biosynthesis inhibition upon the addition of indole. Besides this, real-time PCR analysis further revealed that the transcription of lipopeptide biosynthesis genes ituD, fenA, and srfA-A were downregulated by indole with 22.4-, 21.98-, and 26.0-fold, respectively. It therefore was speculated that as the metabolic flux of most of the amino acids and fatty acids were transferred to the synthesis of proteins and biomass, lipopeptide biosynthesis was weakened owing to the lack of precursor amino acids and fatty acids.

Keywords

References

  1. Fravel DR. 2005. Commercialization and implementation of biocontrol. Annu. Rev. Phytopathol. 43: 337-359. https://doi.org/10.1146/annurev.phyto.43.032904.092924
  2. Perez-Garcia A, Romero D, de Vicente A. 2011. Plant protection and growth stimulation by microorganisms: biotechnological applications of bacilli in agriculture. Curr. Opin. Biotechnol. 22: 187-193. https://doi.org/10.1016/j.copbio.2010.12.003
  3. Droby S, Wisniewski M, Macarisin D, Wilson C. 2009. Twenty years of postharvest biocontrol research: is it time for a new paradigm? Postharvest Biol. Technol. 52: 137-145. https://doi.org/10.1016/j.postharvbio.2008.11.009
  4. Islam MT, Hashidoko Y, Deora A, Ito T, Tahara S. 2005. Suppression of damping-off disease in host plants by the rhizoplane bacterium Lysobacter sp. strain SB-K88 is linked to plant colonization and antibiosis against soilborne Peronosporomycetes. Appl. Environ. Microbiol. 71: 3786-3796. https://doi.org/10.1128/AEM.71.7.3786-3796.2005
  5. Patterson GML, Bolis CM. 1997. Fungal cellwall polysaccharides elicit an antifungal secondary metabolite (phytoalexin) in the cyanobacterium Scytonema ocelutum2. J. Phycol. 33: 54-60. https://doi.org/10.1111/j.0022-3646.1997.00054.x
  6. Romero D, de Vicente A, Rakotoaly RH, Dufour SE, Veening JW, Arrebola E, et al. 2007. The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol. Plant Microbe Interact. 20: 430-440. https://doi.org/10.1094/MPMI-20-4-0430
  7. Stein T. 2005. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol. Microbiol. 56: 845-857. https://doi.org/10.1111/j.1365-2958.2005.04587.x
  8. Cochrane SA, Vederas JC. 2016. Lipopeptides from Bacillus and Paenibacillus spp.: a gold mine of antibiotic candidates. Med. Res. Rev. 36: 4-31. https://doi.org/10.1002/med.21321
  9. Ongena M, Jacques P. 2008. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 16: 115-125. https://doi.org/10.1016/j.tim.2007.12.009
  10. Zhao H, Shao D, Jiang C, Shi J, Li Q, Huang Q, et al. 2017. Biological activity of lipopeptides from Bacillus. Appl. Microbiol. Biotechnol. 101: 5951-5960. https://doi.org/10.1007/s00253-017-8396-0
  11. Jin H, Li K, Niu Y, Guo M, Hu C, Chen S, et al. 2015. Continuous enhancement of iturin A production by Bacillus subtilis with a stepwise two-stage glucose feeding strategy. BMC Biotechnol. 15: 53. https://doi.org/10.1186/s12896-015-0172-6
  12. Lu H, Qian S, Muhammad U, Jiang X, Han J, Lu Z. 2016. Effect of fructose on promoting fengycin biosynthesis in Bacillus amyloliquefaciens fmb-60. J. Appl. Microbiol. 121: 1653-1664. https://doi.org/10.1111/jam.13291
  13. Ohno A, Ano T, Shoda M. 1995. Effect of temperature on production of lipopeptide antibiotics, iturin A and surfactin by a dual producer, Bacillus subtilis RB14, in solid-state fermentation. J. Ferment. Bioengineer. 80: 517-519. https://doi.org/10.1016/0922-338X(96)80930-5
  14. Zhao J, Zhao P, Quan C, Jin L, Zheng W, Fan S. 2015. Comparative proteomic analysis of antagonistic Bacillus amyloliquefaciens Q-426 cultivated under different pH conditions. Biotechnol. Appl. Biochem. 62: 574-581. https://doi.org/10.1002/bab.1293
  15. Guez JS, Muller CH, Danze PM, Buchs J, Jacques P. 2008. Respiration activity monitoring system (RAMOS), an efficient tool to study the influence of the oxygen transfer rate on the synthesis of lipopeptide by Bacillus subtilis ATCC6633. J. Biotechnol. 134: 121-126. https://doi.org/10.1016/j.jbiotec.2008.01.003
  16. Doroghazi JR, Albright JC. 2014. A roadmap for natural product discovery based on large-scale genomics and metabolomics. Nat. Chem. Biol. 10: 963-968. https://doi.org/10.1038/nchembio.1659
  17. Adu-Oppong B, Gasparrini AJ, Dantas G. 2017. Genomic and functional techniques to mine the microbiome for novel antimicrobials and antimicrobial resistance genes. Ann. NY Acad. Sci. 1388: 42-58. https://doi.org/10.1111/nyas.13257
  18. Song C, Sundqvist G, Malm E, de Bruijn I, Kumar A, van de Mortel J, et al. 2015. Lipopeptide biosynthesis in Pseudomonas fluorescens is regulated by the protease complex ClpAP. BMC Microbiol. 15: 29. https://doi.org/10.1186/s12866-015-0367-y
  19. Lisec J, Schauer N, Kopka J, Willmitzer L, Fernie AR. 2006. Gas chromatography mass spectrometry-based metabolite profiling in plants. Nat. Protoc. 1: 387-396. https://doi.org/10.1038/nprot.2006.59
  20. Peng B, Su YB, Li H, Han Y, Guo C, Tian YM, et al. 2015. Exogenous alanine and/or glucose plus kanamycin kills antibiotic-resistant bacteria. Cell Metab. 21: 249-261. https://doi.org/10.1016/j.cmet.2015.01.008
  21. Chen XH, Liu SR, Peng B, Li D, Cheng ZX, Zhu JX, et al. 2017. Exogenous L-valine promotes phagocytosis to kill multidrug-resistant bacterial pathogens. Front. Immunol. 8: 207.
  22. Zeng ZH, Du CC, Liu SR, Li H, Peng XX, Peng B. 2017. Glucose enhances tilapia against Edwardsiella tarda infection through metabolome reprogramming. Fish Shellfish Immunol. 61: 34-43. https://doi.org/10.1016/j.fsi.2016.12.010
  23. Li G, Young KD. 2013. Indole production by the tryptophanase TnaA in Escherichia coli is determined by the amount of exogenous tryptophan. Microbiology 159: 402-410. https://doi.org/10.1099/mic.0.064139-0
  24. Lee J-H, Lee J. 2010. Indole as an intercellular signal in microbial communities. FEMS Microbiol. Rev. 34: 426-444. https://doi.org/10.1111/j.1574-6976.2009.00204.x
  25. Wang Z, Li M, Peng B, Cheng Z, Li H, Peng X. 2016. GC- MS-based metabolome and metabolite regulation in serum- resistant Streptococcus agalactiae. J. Proteome Res. 15: 2246. https://doi.org/10.1021/acs.jproteome.6b00215
  26. Roessner U, Luedemann A, Brust D, Fiehn O, Linke T, Willmitzer L, et al. 2001. Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell 13: 11-29. https://doi.org/10.1105/tpc.13.1.11
  27. Berit E, Daniela Z, Alexander E, Ines F, Jürgen H, Annette N, et al. 2010. Metabolic profiling of Arabidopsis thaliana epidermal cells. J. Exp. Bot. 61: 1321. https://doi.org/10.1093/jxb/erq002
  28. Mukherjee S, Das P, Sen R. 2009. Rapid quantification of a microbial surfactant by a simple turbidometric method. J. Microbiol. Methods 76: 38-42. https://doi.org/10.1016/j.mimet.2008.09.010
  29. Yang H, Li X, Li X, Yu H, Shen Z. 2015. Identification of lipopeptide isoforms by MALDI-TOF-MS/MS based on the simultaneous purification of iturin, fengycin, and surfactin by RP-HPLC. Anal. Bioanal. Chem. 407: 2529-2542. https://doi.org/10.1007/s00216-015-8486-8
  30. Cui P, Guo W, Chen X. 2017. Isotryptophan from Antarctic Bacillus amyloliquefaciens Pc3: purification, identification, characterization, and antifungal activity. Nat. Prod. Res. 31: 2153-2157. https://doi.org/10.1080/14786419.2016.1274896
  31. Rao Q, Guo W, Chen X. 2015. Identification and characterization of an antifungal protein, AfAFPR9, produced by marine- derived Aspergillus fumigatus R9. J. Microbiol. Biotechnol. 25: 620-628. https://doi.org/10.4014/jmb.1409.09071
  32. Pfaffl MW. 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29: 2002-2007.
  33. Besson F, Chevanet C, Michel G. 1987. Influence of the culture medium on the production of iturin A by Bacillus subtilis. J. Gen. Microbiol. 133: 767.
  34. Aron ZD, Dorrestein PC, Blackhall JR, Kelleher NL, Walsh CT. 2005. Characterization of a new tailoring domain in polyketide biogenesis: the amine transferase domain of MycA in the mycosubtilin gene cluster. J. Am. Chem. Soc. 127: 14986. https://doi.org/10.1021/ja055247g
  35. Montrone M, Oesterhelt D, Marwan W. 1996. Phosphorylation- independent bacterial chemoresponses correlate with changes in the cytoplasmic level of fumarate. J. Bacteriol. 178: 6882-6887. https://doi.org/10.1128/jb.178.23.6882-6887.1996
  36. Radwanski ER, Last RL. 1995. Tryptophan biosynthesis and metabolism: biochemical and molecular genetics. Plant Cell 7: 921-934. https://doi.org/10.1105/tpc.7.7.921
  37. Guo W, Cui P, Chen X. 2015. Complete genome of Bacillus sp. Pc3 isolated from the Antarctic seawater with antimicrobial activity. Mar. Genomics 20: 1-2. https://doi.org/10.1016/j.margen.2015.01.004