• 제목/요약/키워드: Nose Detection

검색결과 74건 처리시간 0.022초

Skin-tone과 특징형태를 적용한 효율적인 얼굴영역 자동검출 기법의 구현 (Efficient and Automatic Face Detection Using Skin-tone and Shape)

  • 김광희;김성환;최옥매;이배호
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1999년도 하계종합학술대회 논문집
    • /
    • pp.575-578
    • /
    • 1999
  • The principal features of a face are as follows : skin-tone, symmetry, and requisites such as shape of ellipse, eyes, nose, mouth. Also, faces have different size, various shape and position. In case of application of face recognition and detection without preprocessing, efficiency of the performance is decreased. In addition, face itself, complex background, image quality, etc. are included. Therefore, previous face recognition methods are implemented on the base of specific constraints of the face image. In this paper, we propose the efficient and automatic face detection algorithm for minimizing influence such as complex background, image quality, etc. This face detection technique consists of skin-tone, candidate face region and face region extractions.

  • PDF

초음파 인프로세스 센서를 이용한 공구마멸 검출 (Detection of Tool Wear by Using the Ultrasonic In-Process Sensor)

  • 강형식;황준;고준빈;정의식
    • 한국공작기계학회논문집
    • /
    • 제10권3호
    • /
    • pp.55-60
    • /
    • 2001
  • A technique on the detection of tool wear based on the ultrasonic pulse-echo method in turning process is presented. The change in amount of the reflected energy from nose and flank of the tool can be related to the level of tool wear and mechanical integrity of the tool, that is, there exists an excellent correlation between the ultrasonic measurement and tool wear. As a results, the method is very useful for the prediction of cutting tool life and the determination of tool exchange period.

  • PDF

눈 주변영역의 명암분포를 이용한 얼굴탐지 (Face Detection using Brightness Distribution in the Surrounding Area of Eye)

  • 황대동;박주철;김계영
    • 정보처리학회논문지B
    • /
    • 제16B권6호
    • /
    • pp.443-450
    • /
    • 2009
  • 본 논문에서는 눈 주변의 명암분포를 사용하여 영상에 존재하는 얼굴을 탐지하는 새로운 기술을 개발한다. 제안하는 얼굴탐지의 기본적인 절차는 얼굴구성요소 후보 추출, 눈과 입의 형태정보를 이용한 얼굴구성요소 후보 필터링, 눈 후보 주변영역의 에지와 명암분포를 인공신경망 에 적용하여 좌/우안 분류, 눈-입 조합을 통한 얼굴후보 추출, 코 영역 에지의 존재 유무를 이용한 얼굴 검증 순이다. 본 논문에서 제안하는 방식은 눈의 주변영역 정보를 인공신경망에 적용하여 좌/우안 정보를 산출하여 얼굴을 탐지하는 것에 중점을 두고 있다. 이 방법은 피부색상을 이용하지 않으므로 다양한 조명환경과 복잡한 배경을 가지는 영상들에 존재하는 얼굴을 탐지할 수 있다. 탐지율 관점에서 기존의 주요 방법들 보다 우수함을 실험을 통하여 보인다.

색상 정보를 이용한 자동 독화 특징 추출 (Automatic Speechreading Feature Detection Using Color Information)

  • 이경호;양룡;이상범
    • 한국컴퓨터정보학회논문지
    • /
    • 제13권6호
    • /
    • pp.107-115
    • /
    • 2008
  • 얼굴 특징들을 추출하는 것은 자동 독화나 휴먼컴퓨터 인터페이스, 얼굴 인식, 얼굴 이미지 테이터베이스 관리 등에서 매우 중요하다. 본 논문에서는 영상에 존재하는 다양한 색상 정보를 이용하여 얼굴 영역에서 자동 독화를 위한 특징점이 추출되도록 하였다. 얼굴의 특징들은 휘도와 채도 성분으로 인하여 다양한 색 공간에서 다양한 표현 값을 갖는다. 이를 이용하여 각 표현 값들을 증폭하거나 축소, 대비시킴으로서 얼굴 특징들을 추출되게 하였다. 눈과 코, 안쪽 입의 외곽선, 이의 외곽선을 찾았고 실험하여 좋은 결과를 얻었다.

  • PDF

색상과 얼굴 특징 정보를 이용한 얼굴 추적 (Face Tracking Using Face Feature and Color Information)

  • 이경호
    • 한국컴퓨터정보학회논문지
    • /
    • 제18권11호
    • /
    • pp.167-174
    • /
    • 2013
  • 본 논문에서는 컬러 영상에서 얼굴을 추적하는 시스템을 구현하였다. 얼굴 추적은 영상 내에 존재하는 얼굴 영역을 컴퓨터의 기능을 이용하여 찾아내는 작업으로 로봇 시각 시스템 등에 필요한 기능이다. 그러나 입력되는 영상에 존재하는 피부색 범위 화소추출과 같은 단순한 수행으로는 얼굴 추적에 어려움이 있다. 피부색은 빛의 조건에 의해 다른 색으로 표현될 뿐 아니라 피부색은 얼굴 뿐 아니라 손과 발 등 다양한 곳에 존재하기 때문에 얼굴을 추적하기 위한 다른 조치가 필요하다. 본 논문에서는 피부색 추출을 위한 함수를 사용하되 효율 향상을 위한 조명 보정을 수행하였고 또 피부색 범위 내에서 추출된 피부색 블록에서 눈 코 입의 특징을 찾아 얼굴로 확정하는 전 과정을 수행하는 시스템을 구현하였다. 제안된 조명 보정은 피부색 추출에 초점을 맞추어 변형 sine 함수로 인간 시각에는 도움이 되지 않더라도 피부색 추출에는 약4% 정도의 개선을 보였으며, 얼굴의 특징들의 추출에는 다양한 색 공간에서 다양한 표현 값들을 증폭하거나 축소, 대비시킴으로서 얼굴 특징들을 추출되게 하여 얼굴로 판단하여 얼굴 추적을 하여, 얼굴이 잘 추적되게 하였다.

스테레오 영상의 정합값을 통한 얼굴특징 추출 방법 (Face Feature Extraction Method ThroughStereo Image's Matching Value)

  • 김상명;박장한;남궁재찬
    • 한국멀티미디어학회논문지
    • /
    • 제8권4호
    • /
    • pp.461-472
    • /
    • 2005
  • 본 논문에서는 스테레오 영상의 정합값(matching)을 통한 얼굴 특징추출 알고리즘을 제안한다. 제안된 알고리즘에서는 얼굴색상 정보의 RGB컬러공간을 YCbCr컬러공간으로 변환하여 얼굴영역 검출하였다. 추출된 얼굴영역으로부터 눈 형판(template)을 적용하여 눈 사이의 거리와 기울어짐, 코와 입에 대한 특징의 기하학적인 특징 벡터를 추출하였다. 또한 제안한 방법은 2차원 특징정보 뿐만 아니라 스테레오 영상의 정합을 통한 얼굴의 눈, 코, 입의 특징을 추출할 수 있었다. 실험을 통하여 약 1m이내 거리에서 73%의 일치율을 보였고, 약 1m이후 거리에선 52%의 일치율을 보였다.

  • PDF

Region-Based Facial Expression Recognition in Still Images

  • Nagi, Gawed M.;Rahmat, Rahmita O.K.;Khalid, Fatimah;Taufik, Muhamad
    • Journal of Information Processing Systems
    • /
    • 제9권1호
    • /
    • pp.173-188
    • /
    • 2013
  • In Facial Expression Recognition Systems (FERS), only particular regions of the face are utilized for discrimination. The areas of the eyes, eyebrows, nose, and mouth are the most important features in any FERS. Applying facial features descriptors such as the local binary pattern (LBP) on such areas results in an effective and efficient FERS. In this paper, we propose an automatic facial expression recognition system. Unlike other systems, it detects and extracts the informative and discriminant regions of the face (i.e., eyes, nose, and mouth areas) using Haar-feature based cascade classifiers and these region-based features are stored into separate image files as a preprocessing step. Then, LBP is applied to these image files for facial texture representation and a feature-vector per subject is obtained by concatenating the resulting LBP histograms of the decomposed region-based features. The one-vs.-rest SVM, which is a popular multi-classification method, is employed with the Radial Basis Function (RBF) for facial expression classification. Experimental results show that this approach yields good performance for both frontal and near-frontal facial images in terms of accuracy and time complexity. Cohn-Kanade and JAFFE, which are benchmark facial expression datasets, are used to evaluate this approach.

Online Face Avatar Motion Control based on Face Tracking

  • Wei, Li;Lee, Eung-Joo
    • 한국멀티미디어학회논문지
    • /
    • 제12권6호
    • /
    • pp.804-814
    • /
    • 2009
  • In this paper, a novel system for avatar motion controlling by tracking face is presented. The system is composed of three main parts: firstly, LCS (Local Cluster Searching) method based face feature detection algorithm, secondly, HMM based feature points recognition algorithm, and finally, avatar controlling and animation generation algorithm. In LCS method, face region can be divided into many small piece regions in horizontal and vertical direction. Then the method will judge each cross point that if it is an object point, edge point or the background point. The HMM method will distinguish the mouth, eyes, nose etc. from these feature points. Based on the detected facial feature points, the 3D avatar is controlled by two ways: avatar orientation and animation, the avatar orientation controlling information can be acquired by analyzing facial geometric information; avatar animation can be generated from the face feature points smoothly. And finally for evaluating performance of the developed system, we implement the system on Window XP OS, the results show that the system can have an excellent performance.

  • PDF

Curvature and Histogram of oriented Gradients based 3D Face Recognition using Linear Discriminant Analysis

  • Lee, Yeunghak
    • Journal of Multimedia Information System
    • /
    • 제2권1호
    • /
    • pp.171-178
    • /
    • 2015
  • This article describes 3 dimensional (3D) face recognition system using histogram of oriented gradients (HOG) based on face curvature. The surface curvatures in the face contain the most important personal feature information. In this paper, 3D face images are recognized by the face components: cheek, eyes, mouth, and nose. For the proposed approach, the first step uses the face curvatures which present the facial features for 3D face images, after normalization using the singular value decomposition (SVD). Fisherface method is then applied to each component curvature face. The reason for adapting the Fisherface method maintains the surface attribute for the face curvature, even though it can generate reduced image dimension. And histogram of oriented gradients (HOG) descriptor is one of the state-of-art methods which have been shown to significantly outperform the existing feature set for several objects detection and recognition. In the last step, the linear discriminant analysis is explained for each component. The experimental results showed that the proposed approach leads to higher detection accuracy rate than other methods.

얼굴가림 정보를 이용한 유사 범인 검출에 관한 연구 (A Study on Look alike Offender Detection Using Hidden Face Information)

  • 김수인
    • 조명전기설비학회논문지
    • /
    • 제28권4호
    • /
    • pp.70-79
    • /
    • 2014
  • In this paper, I propose a method for detection of look-alike offenders by using hidden face information. For extraction of moving objects, PRA matching is used to extract moving components, and brightness changes can be dealt with by an adaptive threshold adjusting in the proposed method. Moving objects extracted in the territory of the face region is extracted using the complexion, facial area, eyes, nose, mouth. The extracted information detected by the presence of these characteristics were likely to help judge a person. Results of the extracted face makes the recognition rate of possible murderers 90% so the usefulness of the proposed method was confirmed.