The principal features of a face are as follows : skin-tone, symmetry, and requisites such as shape of ellipse, eyes, nose, mouth. Also, faces have different size, various shape and position. In case of application of face recognition and detection without preprocessing, efficiency of the performance is decreased. In addition, face itself, complex background, image quality, etc. are included. Therefore, previous face recognition methods are implemented on the base of specific constraints of the face image. In this paper, we propose the efficient and automatic face detection algorithm for minimizing influence such as complex background, image quality, etc. This face detection technique consists of skin-tone, candidate face region and face region extractions.
A technique on the detection of tool wear based on the ultrasonic pulse-echo method in turning process is presented. The change in amount of the reflected energy from nose and flank of the tool can be related to the level of tool wear and mechanical integrity of the tool, that is, there exists an excellent correlation between the ultrasonic measurement and tool wear. As a results, the method is very useful for the prediction of cutting tool life and the determination of tool exchange period.
본 논문에서는 눈 주변의 명암분포를 사용하여 영상에 존재하는 얼굴을 탐지하는 새로운 기술을 개발한다. 제안하는 얼굴탐지의 기본적인 절차는 얼굴구성요소 후보 추출, 눈과 입의 형태정보를 이용한 얼굴구성요소 후보 필터링, 눈 후보 주변영역의 에지와 명암분포를 인공신경망 에 적용하여 좌/우안 분류, 눈-입 조합을 통한 얼굴후보 추출, 코 영역 에지의 존재 유무를 이용한 얼굴 검증 순이다. 본 논문에서 제안하는 방식은 눈의 주변영역 정보를 인공신경망에 적용하여 좌/우안 정보를 산출하여 얼굴을 탐지하는 것에 중점을 두고 있다. 이 방법은 피부색상을 이용하지 않으므로 다양한 조명환경과 복잡한 배경을 가지는 영상들에 존재하는 얼굴을 탐지할 수 있다. 탐지율 관점에서 기존의 주요 방법들 보다 우수함을 실험을 통하여 보인다.
얼굴 특징들을 추출하는 것은 자동 독화나 휴먼컴퓨터 인터페이스, 얼굴 인식, 얼굴 이미지 테이터베이스 관리 등에서 매우 중요하다. 본 논문에서는 영상에 존재하는 다양한 색상 정보를 이용하여 얼굴 영역에서 자동 독화를 위한 특징점이 추출되도록 하였다. 얼굴의 특징들은 휘도와 채도 성분으로 인하여 다양한 색 공간에서 다양한 표현 값을 갖는다. 이를 이용하여 각 표현 값들을 증폭하거나 축소, 대비시킴으로서 얼굴 특징들을 추출되게 하였다. 눈과 코, 안쪽 입의 외곽선, 이의 외곽선을 찾았고 실험하여 좋은 결과를 얻었다.
본 논문에서는 컬러 영상에서 얼굴을 추적하는 시스템을 구현하였다. 얼굴 추적은 영상 내에 존재하는 얼굴 영역을 컴퓨터의 기능을 이용하여 찾아내는 작업으로 로봇 시각 시스템 등에 필요한 기능이다. 그러나 입력되는 영상에 존재하는 피부색 범위 화소추출과 같은 단순한 수행으로는 얼굴 추적에 어려움이 있다. 피부색은 빛의 조건에 의해 다른 색으로 표현될 뿐 아니라 피부색은 얼굴 뿐 아니라 손과 발 등 다양한 곳에 존재하기 때문에 얼굴을 추적하기 위한 다른 조치가 필요하다. 본 논문에서는 피부색 추출을 위한 함수를 사용하되 효율 향상을 위한 조명 보정을 수행하였고 또 피부색 범위 내에서 추출된 피부색 블록에서 눈 코 입의 특징을 찾아 얼굴로 확정하는 전 과정을 수행하는 시스템을 구현하였다. 제안된 조명 보정은 피부색 추출에 초점을 맞추어 변형 sine 함수로 인간 시각에는 도움이 되지 않더라도 피부색 추출에는 약4% 정도의 개선을 보였으며, 얼굴의 특징들의 추출에는 다양한 색 공간에서 다양한 표현 값들을 증폭하거나 축소, 대비시킴으로서 얼굴 특징들을 추출되게 하여 얼굴로 판단하여 얼굴 추적을 하여, 얼굴이 잘 추적되게 하였다.
본 논문에서는 스테레오 영상의 정합값(matching)을 통한 얼굴 특징추출 알고리즘을 제안한다. 제안된 알고리즘에서는 얼굴색상 정보의 RGB컬러공간을 YCbCr컬러공간으로 변환하여 얼굴영역 검출하였다. 추출된 얼굴영역으로부터 눈 형판(template)을 적용하여 눈 사이의 거리와 기울어짐, 코와 입에 대한 특징의 기하학적인 특징 벡터를 추출하였다. 또한 제안한 방법은 2차원 특징정보 뿐만 아니라 스테레오 영상의 정합을 통한 얼굴의 눈, 코, 입의 특징을 추출할 수 있었다. 실험을 통하여 약 1m이내 거리에서 73%의 일치율을 보였고, 약 1m이후 거리에선 52%의 일치율을 보였다.
In Facial Expression Recognition Systems (FERS), only particular regions of the face are utilized for discrimination. The areas of the eyes, eyebrows, nose, and mouth are the most important features in any FERS. Applying facial features descriptors such as the local binary pattern (LBP) on such areas results in an effective and efficient FERS. In this paper, we propose an automatic facial expression recognition system. Unlike other systems, it detects and extracts the informative and discriminant regions of the face (i.e., eyes, nose, and mouth areas) using Haar-feature based cascade classifiers and these region-based features are stored into separate image files as a preprocessing step. Then, LBP is applied to these image files for facial texture representation and a feature-vector per subject is obtained by concatenating the resulting LBP histograms of the decomposed region-based features. The one-vs.-rest SVM, which is a popular multi-classification method, is employed with the Radial Basis Function (RBF) for facial expression classification. Experimental results show that this approach yields good performance for both frontal and near-frontal facial images in terms of accuracy and time complexity. Cohn-Kanade and JAFFE, which are benchmark facial expression datasets, are used to evaluate this approach.
In this paper, a novel system for avatar motion controlling by tracking face is presented. The system is composed of three main parts: firstly, LCS (Local Cluster Searching) method based face feature detection algorithm, secondly, HMM based feature points recognition algorithm, and finally, avatar controlling and animation generation algorithm. In LCS method, face region can be divided into many small piece regions in horizontal and vertical direction. Then the method will judge each cross point that if it is an object point, edge point or the background point. The HMM method will distinguish the mouth, eyes, nose etc. from these feature points. Based on the detected facial feature points, the 3D avatar is controlled by two ways: avatar orientation and animation, the avatar orientation controlling information can be acquired by analyzing facial geometric information; avatar animation can be generated from the face feature points smoothly. And finally for evaluating performance of the developed system, we implement the system on Window XP OS, the results show that the system can have an excellent performance.
This article describes 3 dimensional (3D) face recognition system using histogram of oriented gradients (HOG) based on face curvature. The surface curvatures in the face contain the most important personal feature information. In this paper, 3D face images are recognized by the face components: cheek, eyes, mouth, and nose. For the proposed approach, the first step uses the face curvatures which present the facial features for 3D face images, after normalization using the singular value decomposition (SVD). Fisherface method is then applied to each component curvature face. The reason for adapting the Fisherface method maintains the surface attribute for the face curvature, even though it can generate reduced image dimension. And histogram of oriented gradients (HOG) descriptor is one of the state-of-art methods which have been shown to significantly outperform the existing feature set for several objects detection and recognition. In the last step, the linear discriminant analysis is explained for each component. The experimental results showed that the proposed approach leads to higher detection accuracy rate than other methods.
In this paper, I propose a method for detection of look-alike offenders by using hidden face information. For extraction of moving objects, PRA matching is used to extract moving components, and brightness changes can be dealt with by an adaptive threshold adjusting in the proposed method. Moving objects extracted in the territory of the face region is extracted using the complexion, facial area, eyes, nose, mouth. The extracted information detected by the presence of these characteristics were likely to help judge a person. Results of the extracted face makes the recognition rate of possible murderers 90% so the usefulness of the proposed method was confirmed.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.