• 제목/요약/키워드: Normaloid

검색결과 10건 처리시간 0.022초

A Class of Normaloid Weighted Composition Operators on the Fock Space over ℂ

  • Santhoshkumar, Chandrasekaran;Veluchamy, Thirumalaisamy
    • Kyungpook Mathematical Journal
    • /
    • 제61권4호
    • /
    • pp.889-896
    • /
    • 2021
  • Let 𝜙 be an entire self map on ℂ and let 𝜓 be an entire function on ℂ. A weighted composition operator induced by 𝜙 with weight 𝜓 is given by C𝜓,𝜙. In this paper we investigate under what conditions the weighted composition operators C𝜓,𝜙 on the Fock space over ℂ induced by 𝜙 with weight of the form $k_c({\zeta})=e^{{\langle}{\zeta},c{\rangle}-{\frac{{\mid}c{\mid}^2}{2}}}$ is normaloid and essentially normaloid.

OPERATORS SIMILAR TO NORMALOID OPERATORS

  • Zhu, Sen;Li, Chun Guang
    • 대한수학회지
    • /
    • 제48권6호
    • /
    • pp.1203-1223
    • /
    • 2011
  • In this paper, the authors investigate the structure of operators similar to normaloid and transloid operators. In particular, we characterize the interior of the set of operators similar to normaloid (transloid, respectively) operators. This gives a concise spectral condition to determine when an operator is similar to a normaloid or transloid operator. Also it is proved that any Hilbert space operator has a compact perturbation with transloid property. This is used to give a negative answer to a problem posed by W. Y. Lee, concerning Weyl's theorem.

REMARKS CONCERNING SOME GENERALIZED CESÀRO OPERATORS ON ℓ2

  • Rhaly, Henry Crawford Jr.
    • 충청수학회지
    • /
    • 제23권3호
    • /
    • pp.425-434
    • /
    • 2010
  • Here we see that the $p-Ces{\grave{a}}ro$ operators, the generalized $Ces{\grave{a}}ro$ operators of order one, the discrete generalized $Ces{\grave{a}}ro$ operators, and their adjoints are all posinormal operators on ${\ell}^2$, but many of these operators are not dominant, not normaloid, and not spectraloid. The question of dominance for $C_k$, the generalized $Ces{\grave{a}}ro$ operators of order one, remains unsettled when ${\frac{1}{2}}{\leq}k<1$, and that points to some general questions regarding terraced matrices. Sufficient conditions are given for a terraced matrix to be normaloid. Necessary conditions are given for terraced matrices to be dominant, spectraloid, and normaloid. A very brief new proof is given of the well-known result that $C_k$ is hyponormal when $k{\geq}1$.

ON THE CLASS OF κTH ROOTS OF PARANORMAL OPERATORS

  • YANG, YOUNG OH
    • 호남수학학술지
    • /
    • 제26권2호
    • /
    • pp.137-145
    • /
    • 2004
  • we shall study some properties of a new class ($\sqrt[\kappa]{P}$) (defined below). Also we show that T may not be normaloid when $T{\in}(\sqrt[\kappa]{P})$, and that the class ($\sqrt{H}$) may not have the translation-invariant propety.

  • PDF

NORMAL, COHYPONORMAL AND NORMALOID WEIGHTED COMPOSITION OPERATORS ON THE HARDY AND WEIGHTED BERGMAN SPACES

  • Fatehi, Mahsa;Shaabani, Mahmood Haji
    • 대한수학회지
    • /
    • 제54권2호
    • /
    • pp.599-612
    • /
    • 2017
  • If ${\psi}$ is analytic on the open unit disk $\mathbb{D}$ and ${\varphi}$ is an analytic self-map of $\mathbb{D}$, the weighted composition operator $C_{{\psi},{\varphi}}$ is defined by $C_{{\psi},{\varphi}}f(z)={\psi}(z)f({\varphi}(z))$, when f is analytic on $\mathbb{D}$. In this paper, we study normal, cohyponormal, hyponormal and normaloid weighted composition operators on the Hardy and weighted Bergman spaces. First, for some weighted Hardy spaces $H^2({\beta})$, we prove that if $C_{{\psi},{\varphi}}$ is cohyponormal on $H^2({\beta})$, then ${\psi}$ never vanishes on $\mathbb{D}$ and ${\varphi}$ is univalent, when ${\psi}{\not\equiv}0$ and ${\varphi}$ is not a constant function. Moreover, for ${\psi}=K_a$, where |a| < 1, we investigate normal, cohyponormal and hyponormal weighted composition operators $C_{{\psi},{\varphi}}$. After that, for ${\varphi}$ which is a hyperbolic or parabolic automorphism, we characterize all normal weighted composition operators $C_{{\psi},{\varphi}}$, when ${\psi}{\not\equiv}0$ and ${\psi}$ is analytic on $\bar{\mathbb{D}}$. Finally, we find all normal weighted composition operators which are bounded below.

CONTRACTIONS OF CLASS Q AND INVARIANT SUBSPACES

  • DUGGAL, B.P.;KUBRUSLY, C.S.;LEVAN, N.
    • 대한수학회보
    • /
    • 제42권1호
    • /
    • pp.169-177
    • /
    • 2005
  • A Hilbert Space operator T is of class Q if $T^2{\ast}T^2-2T{\ast}T + I$ is nonnegative. Every paranormal operator is of class Q, but class-Q operators are not necessarily normaloid. It is shown that if a class-Q contraction T has no nontrivial invariant subspace, then it is a proper contraction. Moreover, the nonnegative operator Q = $T^2{\ast}T^2-2T{\ast}T + I$ also is a proper contraction.

A NOTE ON ∗-PARANORMAL OPERATORS AND RELATED CLASSES OF OPERATORS

  • Tanahashi, Kotoro;Uchiyama, Atsushi
    • 대한수학회보
    • /
    • 제51권2호
    • /
    • pp.357-371
    • /
    • 2014
  • We shall show that the Riesz idempotent $E_{\lambda}$ of every *-paranormal operator T on a complex Hilbert space H with respect to each isolated point ${\lambda}$ of its spectrum ${\sigma}(T)$ is self-adjoint and satisfies $E_{\lambda}\mathcal{H}=ker(T-{\lambda})= ker(T-{\lambda})^*$. Moreover, Weyl's theorem holds for *-paranormal operators and more general for operators T satisfying the norm condition $||Tx||^n{\leq}||T^nx||\,||x||^{n-1}$ for all $x{\in}\mathcal{H}$. Finally, for this more general class of operators we find a sufficient condition such that $E_{\lambda}\mathcal{H}=ker(T-{\lambda})= ker(T-{\lambda})^*$ holds.

OPERATORS A, B FOR WHICH THE ALUTHGE TRANSFORM ${\tilde{AB}}$ IS A GENERALISED n-PROJECTION

  • Bhagwati P. Duggal;In Hyoun Kim
    • 대한수학회보
    • /
    • 제60권6호
    • /
    • pp.1555-1566
    • /
    • 2023
  • A Hilbert space operator A ∈ B(H) is a generalised n-projection, denoted A ∈ (G-n-P), if A*n = A. (G-n-P)-operators A are normal operators with finitely countable spectra σ(A), subsets of the set $\{0\}\,{\cup}\,\{\sqrt[n+1]{1}\}.$ The Aluthge transform à of A ∈ B(H) may be (G - n - P) without A being (G - n - P). For doubly commuting operators A, B ∈ B(H) such that σ(AB) = σ(A)σ(B) and ${\parallel}A{\parallel}\,{\parallel}B{\parallel}\;{\leq}\;{\parallel}{\tilde{AB}}{\parallel},$ ${\tilde{AB}}\;{\in}\;(G\,-\,n\,-\,P)$ if and only if $A\;=\;{\parallel}{\tilde{A}}{\parallel}\,(A_{00}\,{\oplus}\,(A_0\,{\oplus}\,A_u))$ and $B\;=\;{\parallel}{\tilde{B}}{\parallel}\,(B_0\,{\oplus}\,B_u),$ where A00 and B0, and A0 ⊕ Au and Bu, doubly commute, A00B0 and A0 are 2 nilpotent, Au and Bu are unitaries, A*nu = Au and B*nu = Bu. Furthermore, a necessary and sufficient condition for the operators αA, βB, αà and ${\beta}{\tilde{B}},\;{\alpha}\,=\,\frac{1}{{\parallel}{\tilde{A}}{\parallel}}$ and ${\beta}\,=\,\frac{1}{{\parallel}{\tilde{B}}{\parallel}},$ to be (G - n - P) is that A and B are spectrally normaloid at 0.