• Title/Summary/Keyword: Normalized Random Error

Search Result 24, Processing Time 0.027 seconds

A study on pattern recognition using DCT and neural network (DCT와 신경회로망을 이용한 패턴인식에 관한 연구)

  • 이명길;이주신
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.3
    • /
    • pp.481-492
    • /
    • 1997
  • This paper presents an algorithm for recognizing surface mount device(SMD) IC pattern based on the error back propoagation(EBP) neural network and discrete cosine transform(DCT). In this approach, we chose such parameters as frequency, angle, translation and amplitude for the shape informantion of SMD IC, which are calculated from the coefficient matrix of DCT. These feature parameters are normalized and then used for the input vector of neural network which is capable of adapting the surroundings such as variation of illumination, arrangement of objects and translation. Learning of EBP neural network is carried out until maximum error of the output layer is less then 0.020 and consequently, after the learning of forty thousand times, the maximum error have got to this value. Experimental results show that the rate of recognition is 100% in case of the random pattern taken at a similar circumstance as well as normalized training pattern. It also show that proposed method is not only relatively relatively simple compare with the traditional space domain method in extracting the feature parameter but also able to re recognize the pattern's class, position, and existence.

  • PDF

The Effect of Input Noise for Directional Frequency Response Functions (방향성 주파수 응답함수에서 입력 잡음의 영향)

  • Kang, Sung-Woo;Seo, Yun-Ho;Lee, Chong-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.735-741
    • /
    • 2008
  • Identification of asymmetry and anisotropy of rotor system is important for diagnosis of rotating machinery. Directional frequency response functions (dFRFs) are known to be a powerful tool in effectively detecting the presence of asymmetry or anisotropy. In this paper, an input noise effect of dFRFs for rotors is estimated, when both asymmetry and anisotropy are present. The normalized random errors of the dFRFs are calculated to verify the validity of the method, which is demonstrated by numerical simulation with a simple rotor model.

  • PDF

ANALYSIS OF ICI FOR OFDM ON THE TWO-RAY FADING ENVIRONMENT (Two-ray 페이딩 환경에서 OFDM의 ICI 분석)

  • 정영모;이상욱
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1996.06a
    • /
    • pp.51-54
    • /
    • 1996
  • In this paper, an interchannel interference (ICI) and symbol error probability for orthogonal frequency division multiplexing (OFDM) on the two-ray fading environment are obtained analytically. From the analysis results, it is found that the ICI is a Gaussian random variable and its variance depends on the subchannel location, normalized time delay, and the number of subchannels. In addition, the OFDM signal without guard interveal is found to yield an irreducible error even at high signal to noise ratio due to the ICI.

  • PDF

Estimation of Incoherent Scattered Field by Multiple Scatterers in Random Media

  • Seo, Dong-Wook;Lee, Jae-Ho;Lee, Hyung Soo
    • ETRI Journal
    • /
    • v.38 no.1
    • /
    • pp.141-148
    • /
    • 2016
  • This paper proposes a method to estimate directly the incoherent scattered intensity and radar cross section (RCS) from the effective permittivity of a random media. The proposed method is derived from the original concept of incoherent scattering. The incoherent scattered field is expressed as a simple formula. Therefore, to reduce computation time, the proposed method can estimate the incoherent scattered intensity and RCS of a random media. To verify the potential of the proposed method for the desired applications, we conducted a Monte-Carlo analysis using the method of moments; we characterized the accuracy of the proposed method using the normalized mean square error (NMSE). In addition, several medium parameters, such as the density of scatterers and analysis volume, were studied to understand their effect on the scattering characteristics of a random media. The results of the Monte-Carlo analysis show good agreement with those of the proposed method, and the NMSE values of the proposed method and Monte-Carlo analysis are relatively small at less than 0.05.

A study on automated soil moisture monitoring methods for the Korean peninsula based on Google Earth Engine (Google Earth Engine 기반의 한반도 토양수분 모니터링 자동화 기법 연구)

  • Jang, Wonjin;Chung, Jeehun;Lee, Yonggwan;Kim, Jinuk;Kim, Seongjoon
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.9
    • /
    • pp.615-626
    • /
    • 2024
  • To accurately and efficiently monitor soil moisture (SM) across South Korea, this study developed a SM estimation model that integrates the cloud computing platform Google Earth Engine (GEE) and Automated Machine Learning (AutoML). Various spatial information was utilized based on Terra MODIS (Moderate Resolution Imaging Spectroradiometer) and the global precipitation observation satellite GPM (Global Precipitation Measurement) to test optimal input data combinations. The results indicated that GPM-based accumulated dry-days, 5-day antecedent average precipitation, NDVI (Normalized Difference Vegetation Index), the sum of LST (Land Surface Temperature) acquired during nighttime and daytime, soil properties (sand and clay content, bulk density), terrain data (elevation and slope), and seasonal classification had high feature importance. After setting the objective function (Determination of coefficient, R2 ; Root Mean Square Error, RMSE; Mean Absolute Percent Error, MAPE) using AutoML for the combination of the aforementioned data, a comparative evaluation of machine learning techniques was conducted. The results revealed that tree-based models exhibited high performance, with Random Forest demonstrating the best performance (R2 : 0.72, RMSE: 2.70 vol%, MAPE: 0.14).

Low-speed Impact Localization on a Stiffened Composite Structure Using Reference Data Method (기준신호 데이터를 이용한 보강된 복합재 구조물에서의 저속 충격위치 탐색)

  • Kim, Yoon-Young;Kim, Jin-Hyuk;Park, Yurim;Shrestha, Pratik;Kwon, Hee-Jung;Kim, Chun-Gon
    • Composites Research
    • /
    • v.29 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • Low-speed impact was localized on a stiffened composite structure, using 4 FBG sensors with 100 kHz-sampling rate interrogator and devised localization algorithm. The composite specimen consists of a main spar and several stringers, and the overall size of the specimen's surface is about $0.8{\times}1.2m$. Pre-stored reference data for 247 grid locations and 36 stiffener locations are gathered and used as comparison target for a random impact signal. The proposed algorithm uses the normalized cross-correlation method to compare the similarities of the two signals; the correlation results for each sensor's signal are multiplied by others, enabling mutual compensation. 20 verification points were successfully localized with a maximum error of 43.4 mm and an average error of 17.0 mm. For the same experimental setup, the performance of the proposed method is evaluated by reducing the number of sensors. It is revealed that the mutual compensation between the sensors is most effective in the case of a two sensor combination. For the sensor combination of FBG #1 and #2, the maximum localization error was 42.5 mm, with average error of 17.4 mm.

Observed Data Oriented Bispectral Estimation of Stationary Non-Gaussian Random Signals - Automatic Determination of Smoothing Bandwidth of Bispectral Windows

  • Sasaki, K.;Shirakata, T.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.502-507
    • /
    • 2003
  • Toward the development of practical methods for observed data oriented bispectral estimation, an automatic means for determining the smoothing bandwidth of bispectral windows is proposed, that can also provide an associated optimum bispectral estimate of stationary non-Gaussian signals, systematically only from an observed time series datum of finite length. For the conventional non-parametric bispectral estimation, the MSE (mean squared error) of the normalized estimate is reviewed under a certain mixing condition and sufficient data length, mainly from the viewpoint of the inverse relation between its bias and variance with respect to the smoothing bandwidth. Based on the fundamental relation, a systematic method not only for determining the bandwidth, but also for obtaining the optimum bispectral estimate is presented by newly introducing a MSE evaluation index of the estimate only from an observed time series datum of finite length. The effectiveness and fundamental features of the proposed method are illustrated by the basic results of numerical experiments.

  • PDF

A Watermark Embedding Technique for Still Images Using Cross-Reference Points (교차 참조 점을 이용한 정지영상의 워터마크 삽입기법)

  • Lee, Hang-Chan
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.4
    • /
    • pp.165-172
    • /
    • 2006
  • In this paper we present a technique for detecting cross-reference points that allows improving watermark detect-ability. In general, Harris detector is commonly used for finding salient points. Harris detector is a kind of combined corner and edge detector which is based on neighboring image data distribution, therefore it has some limitation to find accurate salient points after watermark embedding or any kinds of digital attacks. The new method proposed in this paper used not data distribution but geometrical structure of a normalized image in order to avoid pointing error caused by the distortion of image data. After normalization, we constructed pre-specified number of virtual lines from top to bottom and left to right, and several of cross points were selected by a random key. These selected points specify almost same positions with the accuracy more than that of Harris detector after digital attacks. These points were arranged by a random key, and blocks centered in these points were formed. A reference watermark is formed by a block and embedded in the next block. Because same alteration is applied to the watermark generated and embedded blocks. the detect-ability of watermark is improved even after digital attacks.

Filling in Hydrological Missing Data Using Imputation Methods (Imputation Method를 활용한 수문 결측자료의 보정)

  • Kang, Tae-Ho;Hong, Il-Pyo;Km, Young-Oh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1254-1259
    • /
    • 2009
  • 과거 관측된 수문자료는 분석을 통해 다양한 수문모형의 평가 및 예측과 수자원 정책결정에서 활용된다. 하지만 관측장비의 오작동 및 관측범위의 한계에 의해 수집된 자료에는 결측이 존재한다. 단순히 결측이 존재하는 벡터를 제외하거나, 결측이 존재하는 자료 구간에 선형성이 존재한다는 가정 하에 평균을 활용하기도 했으나, 이로 인하여 자료의 통계특성에 왜곡이 야기될 수 있다. 본 연구는 결측의 보정으로 자료가 보유하는 정보의 손실 및 왜곡을 최소화 할 수 있는 방안을 연구하고자 한다. 자료의 결측은 크게 완벽한 무작위 결측(missing completely at random, MCAR), 무작위 결측(missing at random, MAR), 무작위성이 없는 결측(nonrandom missingness)으로 분류되며, 수문자료는 결측을 포함한 기간이 그 외 기간의 자료와 통계적으로 동일하지는 않지만 결측자료의 추정이 가능한 MAR에 속하는 것이 일반적이므로 이를 가정으로 결측을 보정하였다. Local Lest Squares Imputation(LLSimput)을 결측의 추정을 위해 사용하였으며, 기존에 쉽게 사용되던 선형보간법과 비교하였다. 적용성 평가를 위해 소양강댐 일 유입량 자료에 1 - 5 %의 결측자료를 임의로 생성하였다. 동일한 양의 결측자료에 대해 100개의 셋을 사용하여 보정의 불확실성 범위를 적용된 방법에 대해 비교..평가하였으며, 결측 증가에 따른 보정효과의 변화를 검토하였다. Normalized Root Mean Squared Error(NRMSE)를 사용하여 적용된 두 방법을 평가한 결과, (1) 결측자료의 비가 낮을수록 간단한 선형보간법을 사용한 보정이 효과적이었다. (2) 하지만 결측의 비가 증가할수록 선형보간법의 보정효과는 점차 큰 불확실성과 낮은 보정효과를 보인 반면, (3) LLSimpute는 결측의 증가에 관계없이 일정한 보정효과 및 불확실성 범위를 나타내는 것으로 드러났다.

  • PDF

Step Size Normalization for Maximum Cross-Correntropy Algorithms (최대 상호코렌트로피 알고리듬을 위한 스텝사이즈 정규화)

  • Kim, Namyong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.9
    • /
    • pp.995-1000
    • /
    • 2016
  • The maximum cross-correntropy (MCC) algorithm with a set of random symbols keeps its optimum weights undisturbed from impulsive noise unlike MSE-based algorithms and its main factor has been known to be the input magnitude controller (IMC) that adjusts the input intensity according to error power. In this paper, a normalization of the step size of the MCC algorithm by the power of IMC output is proposed. The IMC output power is tracked recursively through a single-pole low-pass filter. In the simulation under impulsive noise with two different multipath channels, the steady state MSE and convergence speed of the proposed algorithm is found to be enhanced by about 1 dB and 500 samples, respectively, compared to the conventional MCC algorithm.