This paper presents an algorithm for recognizing surface mount device(SMD) IC pattern based on the error back propoagation(EBP) neural network and discrete cosine transform(DCT). In this approach, we chose such parameters as frequency, angle, translation and amplitude for the shape informantion of SMD IC, which are calculated from the coefficient matrix of DCT. These feature parameters are normalized and then used for the input vector of neural network which is capable of adapting the surroundings such as variation of illumination, arrangement of objects and translation. Learning of EBP neural network is carried out until maximum error of the output layer is less then 0.020 and consequently, after the learning of forty thousand times, the maximum error have got to this value. Experimental results show that the rate of recognition is 100% in case of the random pattern taken at a similar circumstance as well as normalized training pattern. It also show that proposed method is not only relatively relatively simple compare with the traditional space domain method in extracting the feature parameter but also able to re recognize the pattern's class, position, and existence.
Identification of asymmetry and anisotropy of rotor system is important for diagnosis of rotating machinery. Directional frequency response functions (dFRFs) are known to be a powerful tool in effectively detecting the presence of asymmetry or anisotropy. In this paper, an input noise effect of dFRFs for rotors is estimated, when both asymmetry and anisotropy are present. The normalized random errors of the dFRFs are calculated to verify the validity of the method, which is demonstrated by numerical simulation with a simple rotor model.
In this paper, an interchannel interference (ICI) and symbol error probability for orthogonal frequency division multiplexing (OFDM) on the two-ray fading environment are obtained analytically. From the analysis results, it is found that the ICI is a Gaussian random variable and its variance depends on the subchannel location, normalized time delay, and the number of subchannels. In addition, the OFDM signal without guard interveal is found to yield an irreducible error even at high signal to noise ratio due to the ICI.
This paper proposes a method to estimate directly the incoherent scattered intensity and radar cross section (RCS) from the effective permittivity of a random media. The proposed method is derived from the original concept of incoherent scattering. The incoherent scattered field is expressed as a simple formula. Therefore, to reduce computation time, the proposed method can estimate the incoherent scattered intensity and RCS of a random media. To verify the potential of the proposed method for the desired applications, we conducted a Monte-Carlo analysis using the method of moments; we characterized the accuracy of the proposed method using the normalized mean square error (NMSE). In addition, several medium parameters, such as the density of scatterers and analysis volume, were studied to understand their effect on the scattering characteristics of a random media. The results of the Monte-Carlo analysis show good agreement with those of the proposed method, and the NMSE values of the proposed method and Monte-Carlo analysis are relatively small at less than 0.05.
본 연구에서는 우리나라 전역에 대해 정확하고 시간 및 비용 효율적으로 토양수분 모니터링을 수행하기 위해 클라우드 컴퓨팅 플랫폼 Google Earth Engine (GEE)와 자동화기계학습(Automated Machine Learning, AutoML)을 결합한 토양수분 산정모형을 개발하였다. Terra MODIS (Moderate Resolution Imaging Spectroradiometer), 전구 강수 관측 위성 GPM (Global Precipitation Measurement)을 기반으로 다양한 공간정보를 활용해 최적의 입력 자료 조합을 테스트하였다. 그 결과, GPM 기반의 무강우누적일수 및 5일 평균강수량, NDVI (Normalized Difference Vegetation Index)와 밤 및 낮시간에 촬영된 LST (Land Surface Temperature)의 합계, 토양특성(사토 및 점토 함량, 용적밀도), 지형자료(고도 및 경사도), 계절 구분이 변수중요도(Feature importance)가 높은 것으로 나타났다. 상기 자료의 조합을 AutoML 통해 목적함수 (Determination of coefficient, R2 ; Root Mean Square Error, RMSE; Mean Absolute Percent Error, MAPE)를 설정 후 기계학습 기법별 비교평가를 수행한 결과, Tree 계열의 모형이 높은 성능을 보였으며, 그 중, Random Forest의 성능이 가장 우수하였다(R2 : 0.72, RMSE: 2.70 vol%, MAPE: 0.14).
본 연구에서는 4개의 FBG 센서가 설치된 보강된 복합재 구조물을 시편으로 사용하여, 충격해머로 가해진 저속 충격 위치를 탐색하였다. 100 kHz의 데이터 샘플링 속도를 가진 FBG 인터로게이터를 사용하였으며, 제안된 알고리즘을 통해 예상 충격위치를 계산하였다. 복합재 시편은 주 스파(Spar)와 몇 개의 스트링거(Stringer)를 포함하며 전체 면적은 $0.8{\times}1.2m$이다. 247개의 격자점과 36개의 보강재 지점에 대한 기준신호 데이터를 얻었으며, 이는 임의의 충격신호에 대한 비교대상이 되었다. 제안된 알고리즘은 normalized cross-correlation을 사용하여 두신호의 상호 유사성을 판독하는 방식으로 작동한다. 각각의 센서 신호로부터 얻어진 correlation 결과는 서로 곱연산되어 상호 보상적인 방법으로 사용되었다. 성능평가를 위해 대상 영역에 대한 20개의 임의의 충격시험을 수행하였다. 시험결과 성공적으로 충격위치를 탐색할 수 있었으며, 4개 센서신호를 사용하여 최대 오차 43.4 mm와 평균 오차 17.0 mm의 성능을 얻었다. 같은 시험에 대하여 사용된 센서의 개수를 변화시켜 가며 그 성능의 변화를 알아보았다. 두 개의 센서를 사용하였을 때 상호 보상적 효과가 최대가 됨을 확인하였으며, 2개의 센서(1, 2번 센서)의 조합으로 최대 오차 42.5 mm와 평균 오차 17.4 mm의 성능을 얻을 수 있었다.
Toward the development of practical methods for observed data oriented bispectral estimation, an automatic means for determining the smoothing bandwidth of bispectral windows is proposed, that can also provide an associated optimum bispectral estimate of stationary non-Gaussian signals, systematically only from an observed time series datum of finite length. For the conventional non-parametric bispectral estimation, the MSE (mean squared error) of the normalized estimate is reviewed under a certain mixing condition and sufficient data length, mainly from the viewpoint of the inverse relation between its bias and variance with respect to the smoothing bandwidth. Based on the fundamental relation, a systematic method not only for determining the bandwidth, but also for obtaining the optimum bispectral estimate is presented by newly introducing a MSE evaluation index of the estimate only from an observed time series datum of finite length. The effectiveness and fundamental features of the proposed method are illustrated by the basic results of numerical experiments.
In this paper we present a technique for detecting cross-reference points that allows improving watermark detect-ability. In general, Harris detector is commonly used for finding salient points. Harris detector is a kind of combined corner and edge detector which is based on neighboring image data distribution, therefore it has some limitation to find accurate salient points after watermark embedding or any kinds of digital attacks. The new method proposed in this paper used not data distribution but geometrical structure of a normalized image in order to avoid pointing error caused by the distortion of image data. After normalization, we constructed pre-specified number of virtual lines from top to bottom and left to right, and several of cross points were selected by a random key. These selected points specify almost same positions with the accuracy more than that of Harris detector after digital attacks. These points were arranged by a random key, and blocks centered in these points were formed. A reference watermark is formed by a block and embedded in the next block. Because same alteration is applied to the watermark generated and embedded blocks. the detect-ability of watermark is improved even after digital attacks.
과거 관측된 수문자료는 분석을 통해 다양한 수문모형의 평가 및 예측과 수자원 정책결정에서 활용된다. 하지만 관측장비의 오작동 및 관측범위의 한계에 의해 수집된 자료에는 결측이 존재한다. 단순히 결측이 존재하는 벡터를 제외하거나, 결측이 존재하는 자료 구간에 선형성이 존재한다는 가정 하에 평균을 활용하기도 했으나, 이로 인하여 자료의 통계특성에 왜곡이 야기될 수 있다. 본 연구는 결측의 보정으로 자료가 보유하는 정보의 손실 및 왜곡을 최소화 할 수 있는 방안을 연구하고자 한다. 자료의 결측은 크게 완벽한 무작위 결측(missing completely at random, MCAR), 무작위 결측(missing at random, MAR), 무작위성이 없는 결측(nonrandom missingness)으로 분류되며, 수문자료는 결측을 포함한 기간이 그 외 기간의 자료와 통계적으로 동일하지는 않지만 결측자료의 추정이 가능한 MAR에 속하는 것이 일반적이므로 이를 가정으로 결측을 보정하였다. Local Lest Squares Imputation(LLSimput)을 결측의 추정을 위해 사용하였으며, 기존에 쉽게 사용되던 선형보간법과 비교하였다. 적용성 평가를 위해 소양강댐 일 유입량 자료에 1 - 5 %의 결측자료를 임의로 생성하였다. 동일한 양의 결측자료에 대해 100개의 셋을 사용하여 보정의 불확실성 범위를 적용된 방법에 대해 비교..평가하였으며, 결측 증가에 따른 보정효과의 변화를 검토하였다. Normalized Root Mean Squared Error(NRMSE)를 사용하여 적용된 두 방법을 평가한 결과, (1) 결측자료의 비가 낮을수록 간단한 선형보간법을 사용한 보정이 효과적이었다. (2) 하지만 결측의 비가 증가할수록 선형보간법의 보정효과는 점차 큰 불확실성과 낮은 보정효과를 보인 반면, (3) LLSimpute는 결측의 증가에 관계없이 일정한 보정효과 및 불확실성 범위를 나타내는 것으로 드러났다.
무작위 발생된 심볼 집합과 최대 상호 코렌트로피 (maximum cross-correntropy) 로 설계된 MCC 알고리듬은 최소자승평균 (MSE) 기반 알고리듬과 달리, 충격성 잡음 하에서 최적 가중치가 동요 없이 안정을 유지하며 그 요인이 오차 전력에 따라 입력의 세기를 조절하는 입력 크기 조정기 (input magnitude controller, IMC)에 있음이 밝혀졌다. 이 논문에서는 스텝사이즈를 정규화한 알고리듬 (normalized MCC, NMCC)를 제안하였으며 여기서 IMC 통과된 신호 전력은 1-pole 저역 통과 필터로 반복적 추정한다. 두 가지 다중경로 채널 모델과 충격성 잡음 환경에서 시행된 시뮬레이션 결과, 정규화된 NMCC알고리듬은 MCC알고리듬에 비해 정상상태 MSE에서 1 dB 정도의 성능 향상을, 수렴 속도에서도 500 샘플 정도 빠른 성능을 나타냈다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.