Journal of Information Science Theory and Practice
/
제6권3호
/
pp.45-60
/
2018
Research performance evaluation in Korean universities follows strict guidelines that specify scoring systems for publication venue categories and formulas for co-authorship credit allocation. To find out how the standards differ across universities and how they differ from bibliometric research evaluation measures, this study analyzed 25 standards from major Korean universities and rankings produced by applying standards and bibliometric measures such as publication and citation counts, normalized impact score, and h-index to the publication data of 195 tenure-track professors of library and information science departments in 35 Korean universities. The study also introduced a novel impact score normalization method to refine the methodology from prior studies. The results showed the university standards to be mostly similar to one another but quite different from citation-driven measures, which suggests the standards are not quite successful in quantifying the quality of research as originally intended.
This paper presents a new algorithm in formulating a performance index for contingency selection method considering voltage security. Security limits defined-in terms of real power line flows and voltage magnitudes are considered in normalized subspaces where in critical contingencies are identified by a filtering algorithm using the infinite norm. Two types of limits, warning limit and emergency limit, are introduced for voltage and line flow. Usually performance indices have been constructed for real power line flows and voltages with each different criterion. This paper, however, presents a method that constructs them with the same criterion in use of the norm properties, so that we can assess security considering both of them. Rapid contingency simulation is performed using one iteration of fast decoupled load flows with LMML(Inverse Matrix Modification Lemma).
PURPOSES : This study aimed to evaluate the performance of pavement management works and to develop a function for estimating the level of service (LOS) and cost of service (COS) for the systematic and quantitative management of pavement performance in the public sector. METHODS : The International Roughness Index (IRI) was used as the performance index for pavement management. Long-term pavement performance data for a period of 7 years (2007-2014) collected by the National Highway Pavement Management System and historical maintenance budget data published by the South Korean government were used to develop the LOS-COS function. Based on the function, a model for estimating the appropriate budget as well as the network conditions was suggested. RESULTS : There was high degree of correlation between pavement performance and the investment level (R = - 0.74). The developed LOS-COS function suggested that the unit cost to improve the network IRI to 1 m/km was 32.6 billion KRW. Further, the maintenance costs normalized with respect to the LOS levels were LOS-A = 88.2 billion KRW, LOS-B = 55.6 billion KRW, and LOS-C = 23.0 billion KRW. CONCLUSIONS : This study proposes a simple way of developing a LOS-COS function. It also shows how to develop a network budget demand and condition estimation model using the LOS-COS function. In addition, it is the first attempt to evaluate the road maintenance budget in South Korea. It is expected that these results will help in the negotiations between the road managers and budget makers.
산림지역에서의 관측은 평지에서의 관측에 비해 지상관측에 있어서 어려움을 가지고, 위성 관측자료는 지상의 지점기반 관측자료에 비해 높은 공간 해상도를 가진다. 이러한 이점을 이용하여 위성 관측자료는 산불발생 위험도를 추정하는 연구에 활용되어왔다. 위성 관측자료를 사용하는 여러 산불 관련 지수 중 TVDI(Temperature Vegetation Dryness Index)는 정규식생지수(Normalized Difference Vegetation Index; NDVI)와 지표면 온도(Land Surface Temperature; LST)를 기반으로 산불발생 위험도를 평가한다. TVDI가 기상과 식생의 건조도를 모두 고려하는 장점을 가지고 있지만 선행 연구에 따르면 TVDI는 여러 산불 관련 지수들에 비하여 한반도에서의 산불발생에 민감하지 않은 것으로 나타났다. 본 연구에서는 한반도에서 TVDI의 산불발생 위험도 표현능력을 향상시키기위해 여러가지 개선방법을 적용하였다. 지상에서 측정한 기온을 적용하여 TVDI의 정확도를 향상시키고, 월별로 최대, 최소 온도 회귀선을 구하여 TVDI에 계절효과를 적용하고자 했으며, 각 지역별로 TVDI를 계산하여 식생 유형 및 지역 기후를 고려하였다. 개선된 TVDI는 선정된 산불사례들을 통해 평가되었으며 산불발생 위험도 측면에서 향상된 성능을 보여주었다.
1960년대부터 조성된 산업단지는 시간이 지남에 따라서, 노후화되고 있다. 산업단지의 노후화에 따른 문제가 발생함에 따라 산업단지 쇠퇴에 관한 연구가 활발히 진행되고 있다. 산업단지 쇠퇴를 측정하고, 재생하기 위한 연구는 활발히 이루어지고 있으나, 산업단지 위기에 관한 연구는 거의 이루어지지 않고 있다. 쇠퇴는 장시간에 걸쳐 지속적으로 나타나는 현상의 결과이지만, 위기는 단기간에 걸쳐 급진적으로 나타나는 결과이다. 산업단지 쇠퇴에 대응하기 위해서는 지속적인 재생이 필요하지만, 산업단지 위기에 대응하기 위해서는 선제적 대응이 필요하다. 따라서 산업단지별, 업종별 외부환경변화 등을 체계적으로 예측 평가할 수 있는 위기지수 개발의 필요하다. 본 연구에서는 산업단지 위기지수를 개발하고자 한다. 산업단지 위기지수 개발을 위한 측정지표를 도출하고, AHP를 기반으로 측정지표의 상대적중요도를 도출한다. 측정지표의 측정 단위가 다르고, 산업단지별 업종별 위기를 민감하게 측정할 수 있는 정규화법을 개발한다. 상대적 중요도와 정규화된 값을 기반으로 산업단지 위기지수를 개발하며, 이를 국가산업단지에 적용하여 적용가능성을 검증하고자 한다.
기후변화로 인한 대형 산불의 빈도가 증가함에 따라 극심한 인명 및 재산상의 피해를 초래하고 있다. 이로 인해 많은 식생이 소실되며, 그 강도와 발생 형태에 따라 생태계 변화에 영향을 끼친다. 생태계 변화는 다시 산불 발생을 유발하여 2차 피해를 야기한다. 따라서 산불 피해지에 대한 정확한 탐지 및 면적 산정의 중요성이 지속적으로 제기되고 있다. 효율적인 산불 피해지 모니터링을 위해 산불 발생 후 실시간 지형 및 기상정보는 물론 피해지역의 영상을 대규모로 취득할 수 있는 위성영상이 주로 활용되고 있다. 최근, 합성곱 신경망(convolution neural network, CNN) 기반 모델부터 고성능 트랜스포머(Transformer) 기반 모델에 이르기까지 딥러닝 알고리즘이 빠르게 발전하면서 산림원격탐사에서 이를 적용한 연구가 활발히 이루어지고 있다. 하지만 현재까지 적용된 딥러닝 모델은 제한적이며 현업에서의 합리적인 활용을 위한 정량적 성능평가에 대한 보고가 부족한 상황이다. 따라서 본 연구에서는 모델에 따른 성능향상과 데이터 설계에 따른 성능향상을 중점적으로 비교 분석하였다. 미국 캘리포니아 지역을 대상으로 CNN 기반 모델의 U-Net, High Resolution Network-Object Contextual Representation (HRNet-OCR)을 활용하여 산불 피해지 모델을 구축하였다. 또한, 기본 파장대역과 함께 식생활력도 및 지표의 수분함량 정도를 고려하고자 normalized difference vegetation index (NDVI), normalized burn ratio (NBR)와 같은 산불 관련 분광지수를 산출하여 입력 이미지로 사용하였다. U-Net의 mean intersection over union (mIoU)이 0.831, HRNet-OCR이 0.848을 기록하여 두 모델 모두 우수한 영상분할 성능을 보였다. 또한, 밴드 반사도뿐 아니라 분광지수를 추가한 결과 모든 조합에서 평가지표 값이 상승하여 분광지수를 활용한 입력 데이터 확장이 픽셀 세분화에 기여함을 확인하였다. 이와 같은 딥러닝 방법론을 발전시킨다면 우리나라의 산불 피해지에 대한 신속한 파악 및 복구 계획 수립의 기초자료로 활용될 수 있을 것으로 기대된다.
Roya Narimani;Shabbir Ahmed Osmani;Seunghyun Hwang;Changhyun Jun
한국수자원학회:학술대회논문집
/
한국수자원학회 2023년도 학술발표회
/
pp.164-164
/
2023
This study investigates the importance of flood-influencing factors on the accuracy of flood risk mapping using the integration of remote sensing-based and machine learning techniques. Here, the Extreme Gradient Boosting (XGBoost) and Random Forest (RF) algorithms integrated with GIS-based techniques were considered to develop and generate flood risk maps. For the study area of NAPA County in the United States, rainfall data from the 12 stations, Sentinel-1 SAR, and Sentinel-2 optical images were applied to extract 13 flood-influencing factors including altitude, aspect, slope, topographic wetness index, normalized difference vegetation index, stream power index, sediment transport index, land use/land cover, terrain roughness index, distance from the river, soil, rainfall, and geology. These 13 raster maps were used as input data for the XGBoost and RF algorithms for modeling flood-prone areas using ArcGIS, Python, and R. As results, it indicates that XGBoost showed better performance than RF in modeling flood-prone areas with an ROC of 97.45%, Kappa of 93.65%, and accuracy score of 96.83% compared to RF's 82.21%, 70.54%, and 88%, respectively. In conclusion, XGBoost is more efficient than RF for flood risk mapping and can be potentially utilized for flood mitigation strategies. It should be noted that all flood influencing factors had a positive effect, but altitude, slope, and rainfall were the most influential features in modeling flood risk maps using XGBoost.
Vehicular traffic on turf results in loss of green cover due to direct tearing of shoots and indirect long-term soil compaction. Protection of turfgrass crowns from wear could increase the ability of turf to recover from heavy traffic. Plastic turfpavers have been installed in trafficked areas to reduce soil compaction and to protect turfgrass crowns from wear. The objectives of this study were to evaluate traffic performance of turfgrasses (Zoysia matrella and Axonopus compressus) and soil mixture (high, medium and low sand mix) combinations on turf-paver complex. The traffic performance of turf and recovery was evaluated based on percent green cover determined by digital image analysis and spectral reflectance responses by NDVI-meter. Bulk density cores indicated significant increase in soil compaction from medium and low sand mixtures compared to high sand mixture. Higher reduction of percent green cover was observed from A. compressus (30-40%) than Z. matrella (10-20%) across soil mixtures. Both turf species displayed higher wear tolerance when established on higher sand (>50% sand) than low sand mixture. Positive turf recovery was also supported by complementary spectral responses. Establishment of Zoysia matrella turf on turfpaver complex using high sand mixture will result in improved wear tolerance.
This study aimed to develop a precise vegetation cover classification model for small streams using the combination of drone remote sensing and support vector machine (SVM) techniques. The chosen study area was the Idong stream, nestled within Geosan-gun, Chunbuk, South Korea. The initial stage involved image acquisition through a fixed-wing drone named ebee. This drone carried two sensors: the S.O.D.A visible camera for capturing detailed visuals and the Sequoia+ multispectral sensor for gathering rich spectral data. The survey meticulously captured the stream's features on August 18, 2023. Leveraging the multispectral images, a range of vegetation indices were calculated. These included the widely used normalized difference vegetation index (NDVI), the soil-adjusted vegetation index (SAVI) that factors in soil background, and the normalized difference water index (NDWI) for identifying water bodies. The third stage saw the development of an SVM model based on the calculated vegetation indices. The RBF kernel was chosen as the SVM algorithm, and optimal values for the cost (C) and gamma hyperparameters were determined. The results are as follows: (a) High-Resolution Imaging: The drone-based image acquisition delivered results, providing high-resolution images (1 cm/pixel) of the Idong stream. These detailed visuals effectively captured the stream's morphology, including its width, variations in the streambed, and the intricate vegetation cover patterns adorning the stream banks and bed. (b) Vegetation Insights through Indices: The calculated vegetation indices revealed distinct spatial patterns in vegetation cover and moisture content. NDVI emerged as the strongest indicator of vegetation cover, while SAVI and NDWI provided insights into moisture variations. (c) Accurate Classification with SVM: The SVM model, fueled by the combination of NDVI, SAVI, and NDWI, achieved an outstanding accuracy of 0.903, which was calculated based on the confusion matrix. This performance translated to precise classification of vegetation, soil, and water within the stream area. The study's findings demonstrate the effectiveness of drone remote sensing and SVM techniques in developing accurate vegetation cover classification models for small streams. These models hold immense potential for various applications, including stream monitoring, informed management practices, and effective stream restoration efforts. By incorporating images and additional details about the specific drone and sensors technology, we can gain a deeper understanding of small streams and develop effective strategies for stream protection and management.
정보검색시스템은 색인어와 질의어가 정확히 일치하지 않더라도 사용자 질의에 적합한 문서를 검색할 수 있어야 한다. 그러나, 색인어와 질의어간의 용어 불일치는 검색성능의 개선에 심각한 장애요소로 작용해 왔다. 따라서, 본 논문에서는 문서 코퍼스의 단어들간에 자동 용어 정규화를 수행하고, 용어 정규화의 산물을 한국어 정보검색 시스템에 적용하는 방안을 제시한다. 용어 불일치를 완화하기 위해 두가지 용어 정규화, 동치부류와 공기단어 클러스터를 수행한다. 첫째, 음역어, 절차오류, 그리고 동의어를 위해 문맥 유사도를 이용하여 동치부류로 구축하는 작업이다. 둘째, 상호정보와 단어 문맥의 조합을 이용하여 단어 유사도를 계산하고 문맥 기반 용어를 정규화한다. 그런 다음, K-means 알고리즘을 이용하여 자율 클러스터링을 수행하고 공기단어 클러스터를 구축한다. 본 논문에서는 이러한 용어 정규화의 산물들을 용어 불일치를 완화하기 위해 질의어 확장과정에서 사용한다. 다시 말해서 동치부류와 공기단어 클러스터는 새로운 용어로 질의를 확장하는 자원으로서 사용된다. 이러한 질의확장으로 사용자는 질의어에 음역어를 추가하여 질의어를 포괄적으로 만들거나 특정어를 추가하여 질의어를 세밀하게 만들 수 있다. 질의어 확장을 위해 두 가지 상호보완적인 방법인 용어 제시와 용어 적합성 피드백을 이용한다. 실험 결과는 제안된 시스템이 의미적 용어 불일치를 완화할 수 있고, 적절한 유사도 값을 제공할 수 있음을 보여준다. 결과적으로 제안한 시스템이 정보 검색 시스템의 검색 효율을 향상시킬 수 있음을 알 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.