• 제목/요약/키워드: Normal Stress

검색결과 2,566건 처리시간 0.03초

심박변동신호에 의한 자율신경 기능 해석시스템의 설계 (The desitgn of autonomic function analysis system by using heart rate variability signal)

  • 이명호;정기삼;이정환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1639-1642
    • /
    • 1997
  • In this paper, the autonomic function analysis system was designed to noninvasively assess the autonomic function of cardiovascular system. Orthostatic stress protocol was designed to stimulate the autonomic nervous system. designed protocol and analysis algorithm were evaluated by experiments for 25 normal subjects and 22 hemiplegia patients. Data were processed by usign the power spectral analysis. Nwe indexes of autonomic function, LF$_{N}$ and HF$_{N}$, were proposed and were compared with LF/HF ratio. New indexes of the sympathetic and parasympathetic activity, respectively. The IST and the DPT are balanced and have positive value for normal subjects during orthostatic stress but not for hempilegia patients. This result suggest that the IST and the DPT are used as new criteria of normal autonomic function during orthostatic stress.ess.

  • PDF

Uniaxial bond stress-slip behavior of reinforcing bars embedded in lightweight aggregate concrete

  • Tang, Chao-Wei
    • Structural Engineering and Mechanics
    • /
    • 제62권5호
    • /
    • pp.651-661
    • /
    • 2017
  • This paper presents an experimental study of bond-slip behavior of reinforced lightweight aggregate concrete (LC) and normal weight concrete (NC) with embedded steel bar. Tests were conducted on tension-pull specimens that had cross-sectional dimension with a reinforcing bar embedded in the center section. The experimental variables include concrete strength (20, 40, and 60 MPa) and coarse aggregate type (normal-weight aggregate and reservoir sludge lightweight aggregate). The test results show that as concrete compressive strength increased, the magnitudes of the slip of the LC specimens were greater than those of the NC specimens. Moreover, the bond strength and stiffness approaches zero at the loaded end, or close to the central anchored point of the specimen. In addition, the proposed bond stress-slip equation can effectively estimate the behavior of bond stress and steel bar slipping.

경량골재 콘크리트의 수축 저감효과에 관한 적용성 연구 (A Study on the Applicability of Shrinkage Reduction Effect of Light-weight Aggregate Concrete)

  • 임상준;방창준;박종혁
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2011년도 추계 학술논문 발표대회
    • /
    • pp.175-176
    • /
    • 2011
  • Applying previous studies performed in the moisture transportation characteristics and shrinkage of lightweight concrete application of shrinkage reduction is to discuss. Applicability of shrinkage reduction effect of lightweight concrete applies for the analysis of PSC girder bridge beam placed on the construction site. Stress of the concrete bridge deck, rebar quantity is calculated by effective elastic modulus method and crack risk is assessed by moisture transport and differential shrinkage analysis. After approximately 10 days maximum tensile stress occurs 6MPa, similar to the case of normal concrete, a maximum tensile stress occurs 3MPa in lightweight concrete and comparing to normal concrete stress was reduced to approximately 50%. Normal and lightweight concrete crack index, respectively, is reduced 1.6 to 1.2, 1.2 to 0.9 in surface and boundary region. Therefore, reduction in shrinkage of concrete were able to confirm reduction of crack risk.

  • PDF

사출 성형 플라스틱 단붙이 기어의 강도평가 (Strength Estimation of Injection Molded Plastic Stepped Spur Gear)

  • 정태형;문창기;하영욱
    • 한국공작기계학회논문집
    • /
    • 제15권3호
    • /
    • pp.17-23
    • /
    • 2006
  • The strength estimation is carried out for injection molded plastic stepped gear. The stepped gear is considered as a plate model which is fixed by two edges and freed on the other sides. The stress of common normal gear is calculated by Lewis formula which can be derived quite simply from the equation fur the stress at the root of a cantilever beam. Stress ratio(step factor) between the common normal gear and stepped gear is proposed for the ratio of the bending stress of normal gear and that of stepped gear. This study proposes the step factor added in Dupont equation which is used for strength estimation of injection molded plastic stepped gear.

유한요소법에 의한 공구인선의 응력분포에 관한 연구

  • 김정두
    • 한국정밀공학회지
    • /
    • 제1권1호
    • /
    • pp.50-58
    • /
    • 1984
  • In the present paper are calculated and compared the stresses on the normal tools and the restricted tools which have three various rake angles by Least Square Method. The results obtained are summerized as follows. The tool displacement at rake angle .alpha. = 12 .deg. and .alpha. = 0 .deg. is positive value in the principal cutting direction and negative value in the feed direction. At rake angle .alpha. = -12 .deg. the displacement is negative value in both of directions. The principal stress of the restricted and normal tool is maximum at the tip of the tool, the shear stress is maximum after a certain distance from the tip. The result of FEM and P.E method shows that in the range of rapid decreasing of normal stress of the tool edge, the shear stress is maintaining a certain value. This is due to the friction characteristic of the chip.

  • PDF

보통 콘크리트의 응력-변형관계에 대한 실험적 연구 (A Experimental Study of Stress-Strain Relation of Normal Concrete)

  • 김화중;안상건;박정민
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1991년도 가을 학술발표회 논문집
    • /
    • pp.87-92
    • /
    • 1991
  • It was achieved to formulate numerically the stress-strain relationship of concrete, which is a fundamemtal factor for the Elasto-Plastic analysis of concrete structures, for normal concrete by using random statistics. As a result of experiment, in the shape of stress-strain curves of normal concrete it has approach linear from first loading to peak point, and after that point deformation increased radically and specimens were brokendown abruptly. From the multiple linear regression, and obtained the exponential equaion for stress-strain relationship of concrete as follows: $\sigma$/$\sigma$max=e(1-$\varepsilon$/$\varepsilon$max)$\varepsilon$/$\varepsilon$max

  • PDF

일정수직강성(CNS) 조건에서 절리면 전단거동에 관한 연구 (A Study on Shear Behaviors for the Rock Joint in the Constant Normal Stiffness Condition)

  • 김용준;이영휘;김선기;김주화
    • 터널과지하공간
    • /
    • 제15권5호
    • /
    • pp.330-337
    • /
    • 2005
  • 전단하중을 받는 암반의 전단특성은 절리면의 구조적인 특징뿐만 아니라 암반 주변의 경계조건에 의해서도 영향을 받는다. 암반블록의 경계조건은 절리면이 받고 있는 응력상태를 기준으로 4가지로 구분할 수 있다. 일반적으로 주로 사용되는 CNL 조건의 전단시험에서 얻어지는 전단강도는 다른 경계조건에서 얻어지는 것보다 낮은 전단강도를 나타내며 그 거동도 다른 것으로 나타났다. 본 연구에서는 일정수직하중(CNL) 시험결과를 정규화한 그래픽 방법을 이용하여 일정수직강성(CNS) 조건의 전단거동을 모사할 수 있었다.

Complete moment-curvature relationship of reinforced normal- and high-strength concrete beams experiencing complex load history

  • Au, F.T.K.;Bai, B.Z.Z.;Kwan, A.K.H.
    • Computers and Concrete
    • /
    • 제2권4호
    • /
    • pp.309-324
    • /
    • 2005
  • The moment-curvature relationship of reinforced concrete beams made of normal- and high-strength concrete experiencing complex load history is studied using a numerical method that employs the actual stress-strain curves of the constitutive materials and takes into account the stress-path dependence of the concrete and steel reinforcement. The load history considered includes loading, unloading and reloading. From the results obtained, it is found that the complete moment-curvature relationship, which is also path-dependent, is similar to the material stress-strain relationship with stress-path dependence. However, the unloading part of the moment-curvature relationship of the beam section is elastic but not perfectly linear, although the unloading of both concrete and steel is assumed to be linearly elastic. It is also observed that when unloading happens, the variation of neutral axis depth has different trends for under- and over-reinforced sections. Moreover, even when the section is fully unloaded, there are still residual curvature and stress in the section in some circumstances. Various issues related to the post-peak behavior of reinforced concrete beams are also discussed.

비만도에 따른 여대생의 스트레스와 영양소 섭취 (Stress and Nutrient Intakes by the Degree of Obesity in Female College Students)

  • 황햇빛;노희경
    • 통합자연과학논문집
    • /
    • 제4권4호
    • /
    • pp.332-338
    • /
    • 2011
  • This study was conducted to find associations of stress with obesity in female college students in Gwangju. 343 subjects were divided into two groups based on BMI(body mass index). BMI of normal group was $19.3{\pm}1.5$ while that of obese group was $26.4{\pm}3.6$. The measured stress level in obese subjects was higher and they were less capable of controlling obese oriented attitude compared to normal subject. Twenty four hour dietary recall revealed that nutrient intakes of obese subjects were higher in energy, lipid, P and cholesterol. However, they were more deficient in Ca, Fe and vitamin A, compared to those of normal ones. This study suggested severe stress might trigger undesirable dietary behavior leading to increase in food consumption which contribute to obesity. Effective nutrition education program targeting obese female students should be developed and implemented to relieve stress and practice desirable dietary behavior and eating pattern.

Improved analytical solution for slip and interfacial stress in composite steel-concrete beam bonded with an adhesive

  • Tayeb, Bensatallah;Daouadji, Tahar Hassaine
    • Advances in materials Research
    • /
    • 제9권2호
    • /
    • pp.133-153
    • /
    • 2020
  • In this paper, an improved theoretical interfacial stress and slip analysis is presented for simply supported composite steel-concrete beam bonded with an adhesive. The adherend shear deformations have been included in the present theoretical analyses by assuming a linear shear stress through the thickness of the adherends, while all existing solutions neglect this effect. Remarkable effect of shear deformations of elements has been noted in the results. It is observed that large shear is concentrated and slip at the edges of the composite steel-concrete. Comparing with some experimental results from references, analytical advantage of this improvement is possible to determine the normal and shear stress to estimate exact prediction of normal and shear stress interfacial along span between concrete and steel beam. The exact prediction of these stresses will be very important to make an accurate analysis of the mode of fracture. It is shown that both the normal and shear stresses at the interface are influenced by the material and geometry parameters of the composite steel-concrete beam. This research is helpful for the understanding on mechanical behavior of the connection and design of such structures.