• 제목/요약/키워드: Nonpoint pollution

검색결과 288건 처리시간 0.029초

Nitrogen and Phosphorus Content Changes in Paddy Soil and Water As Affected by Organic Fertilizer Application

  • Lee, Kyung-Do;Lee, Kyeong-Bo;Gil, Geun-Hwan;Song, In-hong;Kang, Jong-Gook;Hwang, Seon-Woong
    • 한국환경농학회지
    • /
    • 제30권1호
    • /
    • pp.1-8
    • /
    • 2011
  • BACKGROUND: With increasing public awareness to environment-friendly agriculture, many efforts have been run to develop organic farming technologies in Korea as of late 90s. The objective of this study was to investigate the effects of different organic farming practices on soil chemical properties and water quality in paddy fields. METHODS AND RESULTS: Total nitrogen (TN) and total phosphorus (TP) were monitored for a two-year period (2006 to 2007) from the study organic paddy fields located in Wan-ju, Jeonbuk Province in Korea. TN and TP of organic paddy water were gradually increased for 2~3 weeks after organic manure application and then gradually decreased afterward. The overall variation of TP in the paddy fields was much greater than that of TN. The phosphorus content in organic paddy field appeared to increase with the organic farming period. CONCLUSION(s): This indicates that long-term organic farming is likely to cause phosphorus accumulation in soils and increase vulnerability to rainfall runoff. Thus, appropriate phosphorus management needs to be implemented, particularly, to reduce excessive phosphorus supply owing to nitrogen-based determination of organic manure application amount.

Application of Water Quality Management System of Freshwater Lake

  • Kim, Sun-Joo;Kim, Phil-Shik;Lee, Joo-Young
    • 한국농공학회지
    • /
    • 제45권7호
    • /
    • pp.38-48
    • /
    • 2003
  • Lake water quality assessment information is useful to anyone involved in lake management, from lake owners to lake associations. It provides lake water quality criteria, which can improve the ways how to manage out lake resources and how to measure current conditions. It also provides a knowledge base so that the lakes can be protected and restored. Here, the Freshwater Lake Water Quality Management System(FLAQUM) was developed. The results of FLAQUM application by scenario proved that pollutant load at rainfall by the nonpoint sources was much more than normal times at rainfall. From the result of Scenario I (pollutant source increase case), the concentrations of Boryeong freshwater lake were BOD 9.43mg/L, T-N 4.53 mg/L and T-P 0.21 mg/L, respectively, and those values exceed the standard of agricultural water. And in case of Scenario I and II(the present case) excluding Scenario III (pollutant source decrease case), all of T-N and T-P are either mesotrophication or eutrophication, on the other hand when 60% of pollution source is removed, the concentrations of Scenario III were BOD 3.21 mg/L, T-N 0.95 mg/L, T-P 0.11 mg/L, respectively, and which satisfies the standard of agricultural water quality.

지표수질 모의를 위한 NAPRA WWW 시스템의 적용 (Application of NAPRA WWW for Modeling Surface Water Quality)

  • 임경재;버나드 엥겔;김기성;최중대
    • 농촌계획
    • /
    • 제10권4호
    • /
    • pp.55-64
    • /
    • 2004
  • National Agricultural Pesticide Risk Analysis (NAPRA) WWW 시스템 (http://pasture.ecn.purdue.edu/${\sim}napra$)은 각기 다른 영농방법이 지표수질, 유사, 그리고 지하수질에 미치는 영향을 평가하기 위하여 개발되었다. 이 NAPRA WWW 시스템은 Total Maximum Daily Loads와 같은 수질 요건을 만족시킬 수 있는 최적영농 방법이 무엇인지 찾는데, 그리고 수질측면에서 취약한 지역을 찾아내는데 매우 효율적인 시스템이다. 이 NAPRA WWW 시스템을 이용하여 미국 인디애나주의 수계에 대해서, NAPRA 모의 Nitrogen과 Atrazine 결과를 실측치와 비교하였다. 18개 수계에 대해서 NAPRA 예측 질소값과 실측 질소값을 비교한 결과 $R^2$ 값은 0.51이고, 6개 수계에 대해서 NAPRA 예측 Atrazine값과 실측값을 비교한 결과 $R^2$ 값은 0.87이었다. 이 연구에서 보여지는 바와 같이 NAPRA WWW 시스템은 수계내에서 질소와 Atrazine에 따른 오염지역을 찾아내는데 효율적으로 사용될 수 있는 시스템이다.

안정 동위원소비를 이용한 농촌하천유역 질산성 질소의 오염원 추정 (Identification of the Sources of Nitrate using Stable Isotope Mass Ratio in Rural Watersheds)

  • 홍영진;권순국;홍성구
    • 한국농공학회지
    • /
    • 제43권4호
    • /
    • pp.120-128
    • /
    • 2001
  • Pollution sources and their environmental contributions were investigated to select the best management practices for the effective control of water quality. The nitrogen isotope mass ratio was determined to estimate the nitrate sources and their contribution. Sampling sites were chosen by calculating effluent loads at each watershed. Two liters each of the surface water samples were collected from four sites at Bokha river and two sites and Gwanri river. They were sequentially prepared through distillation method and analyzed using an isotope ratio mass spectrometer(IsoPrime EA). As revealed by the experimental values obtained the mass ratio values ($\delta$$^{5}$ N) of watersheds with a large amount of nonpoint sources were less than +5 an indication that the samples were influenced by chemical fertilizers. However watersheds with large amount of point sources were influenced not only by chemical fertilizers but also by animal and municipal wastes. The mass ratio values of samples generally decreased during rainy days. But during dry days the mass ratio values well-reflected the nitrate sources and the condition of watersheds. Through this study the nitrogen isotope mass ratio has been found to be useful for estimating nitrate sources and their contribution to the rural watersheds.

  • PDF

복합형 유역모델 STREAM의 개발(I): 모델 구조 및 이론 (Development of a Hybrid Watershed Model STREAM: Model Structures and Theories)

  • 조홍래;정의상;구본경
    • 한국물환경학회지
    • /
    • 제31권5호
    • /
    • pp.491-506
    • /
    • 2015
  • Distributed models represent watersheds using a network of numerous, uniform calculation units to provide spatially detailed and consistent evaluations across the watershed. However, these models have a disadvantage in general requiring a high computing cost. Semi-distributed models, on the other hand, delineate watersheds using a simplified network of non-uniform calculation units requiring a much lower computing cost than distributed models. Employing a simplified network of non-uniform units, however, semi-distributed models cannot but have limitations in spatially-consistent simulations of hydrogeochemical processes and are often not favoured for such a task as identifying critical source areas within a watershed. Aiming to overcome these shortcomings of both groups of models, a hybrid watershed model STREAM (Spatio-Temporal River-basin Ecohydrology Analysis Model) was developed in this study. Like a distributed model, STREAM divides a watershed into square grid cells of a same size each of which may have a different set of hydrogeochemical parameters reflecting the spatial heterogeneity. Like many semi-distributed models, STREAM groups individual cells of similar hydrogeochemical properties into representative cells for which real computations of the model are carried out. With this hybrid structure, STREAM requires a relatively small computational cost although it still keeps the critical advantage of distributed models.

영산강 수계의 토지이용과 수질항목 간의 상관관계 분석 (Analysis of Relationship Between Water Quality Parameters with Land Use in Yeongsan River Basin)

  • 박진환;문명진;김갑순
    • 환경영향평가
    • /
    • 제23권1호
    • /
    • pp.19-27
    • /
    • 2014
  • The purpose of this study is to provide a base line data to improve the water quality in the Yeongsan River basin. As the major factor that affects the water quality of Yeongsan River is nonpoint pollution source, in order to find a resolve to improve the quality, a study was conducted to identify the correlation between the stream water quality and that of the land use. The study showed that the concentration of the contents in the water from the agricultural land environment was found to be higher as oppose to that found in the content of the water from the forest land. As a result, it can be deducted that agricultural land deteriorates water quality whereas that of the forest land is of much better quality. Therefore, it is highly recommended to take advanced improved care of agricultural land close to a water source to improve the quality of Yeongsan River basin.

관개기 곡간지 유역 필지논에서의 비점원오염물질 유출특성 (Characteristics of Non-Point Sources Pollutant Loads at Paddy Plot Located at the Valley Watershed during Irrigation Periods)

  • 한국헌
    • 한국관개배수논문집
    • /
    • 제18권1호
    • /
    • pp.94-102
    • /
    • 2011
  • The aim of this study was to evaluate the load of non-point sources pollutant at a paddy plot located at the valley watershed during irrigation period. Irrigation, runoff and water quality data in the paddy plot were analyzed periodically from June 1 to October 31 in 2005. The observed amount of precipitation, irrigation, runoff for the experimental paddy plot during the irrigation period was 1,297.8, 223.2, and 825.4mm, respectively. Total-N concentrations ranged from 3.73 to 18.10mg/L, which was generally higher than the quality standard of agricultural water (1.0mg/L). Total-P concentrations ranged from 0.111 to 0.243mg/L and the average was 0.139mg/L. The observed runoff pollutants loadings from the paddy plot were measured as 34.4 kg/ha for T-N, 1.0 kg/ha for T-P and 213.8 kg/ha for SS. The non-point sources pollutant load in drainage water depends on rainfall and surface drainage water amount from the paddy plot. We are considering that these results were affected by rainfall as well as hydrological condition, soil management, whether or not fertilizer application, cropping, rice straw and plowing.

  • PDF

기후변화 대응 물 효율성 증대를 위한 스마트 관개기술 연구 (Smart irrigation technique for agricultural water efficiency against climate change)

  • 김민영;전종길;김영진;최용훈
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2017년도 학술발표회
    • /
    • pp.198-198
    • /
    • 2017
  • Climate change causes unpredictable and erratic climatic patterns which affects crop production in agriculture and threatens public health. To cope with the challenges of climate change, sustainable and sound growth environment for crop production should be secured. Recent attention has been given to the development of smart irrigation system using sensors and wireless network as a solution to achieve water conservation as well as improvement in crop yield and quality with less water and labor. This study developed the smart irrigation technique for farmlands by monitoring the soil moisture contents and real-time climate condition for decision-making support. Central to this design is micro-controller which monitors the farm condition and controls the distribution of water on the farm. In addition, a series of laboratory studies were conducted to determine the optimal irrigation pattern, one time versus plug time. This smart technique allows farmers to reduce water use, improve the efficiency of irrigation systems, produce more yields and better quality of crops, reduce fertilizer and pesticide application, improve crop uniformity, and prevent soil erosion which eventually reduce the nonpoint source pollution discharge into aquatic-environment.

  • PDF

도시 호우 유출에 관한 그린인프라의 비점오염원 저감 모델 평가 분석 (Model Evaluations Analysis of Nonpoint Source Pollution Reduction in a Green Infrastructure regarding Urban stormwater)

  • 전설;김시연;이문영;엄명진;정기철;박대룡
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.393-393
    • /
    • 2021
  • 도시화는 도시 호우 유출 발생으로 인한 수질 악화를 초래했고 문제를 해결하기 위해 본 연구에서는 보다 정확한 설계를 위해 그린인프라(Green Infrastructure, GI)의 구조적 특성과 수문학적인 특성을 이용해 어떤 인자들이 설계에 필요한지 상관관계를 통해 분석하였다. GI의 종류 중 저류지와 저류연못의 총부유사량(Total Suspended Solids, TSS)와 총인 (Total Phosphorous, TP)의 유입수, 유출수, 비점오염원 농도, 수문학적인 특성 그리고 GI의 구조적 특성을 Ordinary Least Squares regression(OLS)과 Multi Linear Regression(MLR) 방법을 적용하였다. GI의 구조적인 특성은 한 BMP마다 달라지지 않으나 호우사상의 데이터 개수에 의한 편향이 있을 수 있다. 이런 문제를 해결하기 위해 일정한 범위를 가지고 무작위로 데이터를 추출하는 방법과 이상치를 제외하는 방법을 사용하여 모델에 적용하였다. 이러한 OLS와 MLR 모델들의 정확도를 PBIAS(Percent Bias), NSE(Nash-Sutcliffe efficiency), RSR(RMSE-observations standard deviation ratio)을 통해 분석할 수 있다. 연구 결과 유입수의 비점오염원의 농도뿐만 아니라 수문학적 특성과 GI의 구조적 특성이 함께 들어갈 시 더 좋은 상관관계를 가지고 있음을 알 수 있다. 저류지가 저류연못보다 모델의 성능평가 면에서 좋은 값을 가지고 있지만 특성별 상관관계는 저류연못이 더 뚜렷한 결과를 보여준다.

  • PDF

비강우시 하천 유사 예측을 위한 SWAT 모형 개선 (Modification of Sediment Routing of SWAT model for Predicting Sediment In Dry Condition)

  • 박상준;최용훈;양동석;이서로;이관재;정연지;임경재
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.202-202
    • /
    • 2022
  • SWAT모형은 장기간에 모의가 가능하며 다양한 토양이용과 토지특성을 고려할 수 있는 유역 단위 모형으로 많은 연구에서 이용된다. 이러한 유역단위 수문모형의 평가는 통계적 지수(NSE, R2)들로 모형의 적합성을 평가한다. NSE, R2는 상대적으로 큰 값에 대한 영향을 많이 받는다. 따라서 많은 강우량이 발생하는 시점에서의 유출량과 SS농도가 중요시되었다. 하지만 강우시에 하천으로 유입된 토양 중 일부는 하천에 퇴적물로 침전된다. 이 침전된 토양이 비강우시 바람 등과 같은 이유로 재부유되며 이로 인해 수중 DO를 고갈시켜 수생태계 악영향을 미친다. 이에 따라 비점오염저감시설 평가는 강우시 발생하는 SS농도도 중요하지만 비강우시 재부유되는 SS농도도 중요한 부분이다. SWAT모형에서는 하천 SS농도를 계산하는데 사용되는 매개변수가 강우시와 비강우시에 동일하게 적용되어 비강우시에 과대 산정되어 비강우시 SS농도가 증가되도록 sediment routing이 진행되고 있었다. 본 연구에서는 sediment routing을 수정하여 비강우시 SS농도를 실측 농도와 비슷하게 보정할 수 있도록 개선하였다. 비점오염관리지역 중 하나인 자운천 유역에 개선된 sediment routing을 적용하였다. 개선된 모형은 비강우시 농도가 잘 반영하는 것으로 확인되었다.

  • PDF