• Title/Summary/Keyword: Nonpoint Pollution Source

Search Result 242, Processing Time 0.023 seconds

Assessing the Action Plans in the Control Area(Soyang Reservoir) of Non-point Source Pollution (비점오염원 관리지역(소양호) 목표수질 달성도 평가)

  • Choi, Jaewan;Kang, Min-Ji;Ryu, Jichul;Kim, Dong-Il;Lim, Kyung-Jae;Shin, Dong-Seok
    • Journal of Environmental Science International
    • /
    • v.23 no.5
    • /
    • pp.839-852
    • /
    • 2014
  • The Ministry of Environment (MOE) has made more effort in managing point source pollution rather than in nonpoint source pollution in order to improve water quality of the four major rivers. However, it would be difficult to meet water quality targets solely by managing the point source pollution. As a result of the comprehensive measures established in 2004 under the leadership of the Prime Minister's Office, a variety of policies such as the designation of control areas to manage nonpoint source pollution are now in place. Various action plans to manage nonpoint source pollution have been implemented in the Soyang-dam watershed as one of the control areas designed in 2007. However, there are no tools to comprehensively assess the effectiveness of the action plans. Therefore, this study would assess the action plans (especially, BMPs) designed to manage Soyang-dam watershed with the WinHSPF and the CE-QUAL-W2. To this end, we simulated the rainfall-runoff and the water quality (SS) of the watershed and the reservoir after conducting model calibration and the model validation. As the results of the calibration for the WinHSPF, the determination coefficient ($R^2$) for the flow (Q, $m^3/s$) was 0.87 and the $R^2$ for the SS was 0.78. As the results of the validation, the former was 0.78 and the latter was 0.67. The results seem to be acceptable. Similarly, the calibration results of the CE-QUAL-W2 showed that the RMSE for the water level was 1.08 and the RMSE for the SS was 1.11. The validation results(RMSE) of the water level was 1.86 and the SS was 1.86. Based on the daily simulation results, the water quality target (turbidity 50 NTU) was not exceeded for 2009~2011, as results of maximum turbidity in '09, '10, and '11 were 3.1, 2.5, 5.6 NTU, respectively. The maximum turbidity in the years with the maximum, the minimum, and the average of yearly precipitation (1982~2011) were 15.5, 7.8, and 9.0, respectively, and therefore the water quality target was satisfied. It was discharged high turbidity at Inbuk, Gaa, Naerin, Gwidun, Woogak, Jeongja watershed resulting of the maximum turbidity by sub-basins in 3years(2009~2011). The results indicated that the water quality target for the nonpoint source pollution management should be changed and management area should be adjusted and reduced.

Application of vegetative filter strip to control nonpoint source pollution (비점원 오염관리를 위한 식생여과대의 적용)

  • Chung, Ji-Eun;Chung, Sang-Ok
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.417-420
    • /
    • 2002
  • Non-point source pollution of sediment, plant nutrients and pesticides from cropland has been identified as a significant environmental problem. Vegetative Filter Strips have been identified as one of BMPs to control nonpoint source pollution. This paper reviews the concept, functions, design criteria and management of VFS to control nonpoint source pollution.

  • PDF

Building an Integrated Governance Model and Finding Management Measures for Nonpoint Source Pollution in Watershed Management of Korea

  • Ban, Yong Un;Woo, Hye Mi;Han, Kyung Min;Baek, Jong In
    • Environmental Engineering Research
    • /
    • v.18 no.3
    • /
    • pp.199-208
    • /
    • 2013
  • This study intended to develop an integrated governance model and find measures to manage nonpoint source (NPS) pollutions in watershed management. To reach this goal, this study has analyzed NPS pollution management policies in Korea and has employed statistical methods such as expert Delphi survey, analysis of variance, and factor analysis. As a result, this study has found that the favored basic organization form was a private-public cooperative council. The necessary governance-based NPS pollution management measures determined through this study are as follows: to build collaboration mechanisms including those related to motivation provision, trust building, capacity building, and making optimal regulations; to employ financial resources based on principles such as 'polluter-pays', 'recipient-pays', and 'general-tax-source'; and to develop several programs, including system improvement, pilot and management projects, and publicity.

Determination of EMC and Washoff Characteristics of Stormwater Runoff from Broad-Leaved Forest Areas (산림 활엽수 지역의 강우유출수 유출특성 및 EMC 산정)

  • Kang, Chang Guk;Lee, Soyoung;Gorme, Joan Barniso;Lee, Jea Un;Kim, Lee-Hyung
    • Journal of Environmental Impact Assessment
    • /
    • v.18 no.6
    • /
    • pp.393-399
    • /
    • 2009
  • The water of rivers and lakes are affecting by point and nonpoint source pollutions. The point source pollution can be controlled by establishing the treatment plants. However, nonpoint source pollution by various human activities is not easy to be controlled because it is difficult to determine the exits of the water flow and have many exit points. Due to contribution of nonpoint source pollution, the achievement ratio of water quality in rivers and lakes is not high. TMDL is the outstanding water quality control policy because all of the pollutant loadings from the watershed area are counting on the input loads. Our aqua-ecosystem has self-purification process by biological, physical and ecological processes. The self-purification process can remove the pollutant load from background concentrations. Usually forest area is main source of background concentrations. In Korea, about 70% of the national boundary area consists of mountains. This study is conducting as part of long-term monitoring to determine the Event Mean Concentration during a storm. The monitoring was performed on a broad-leaved tree area.

Comparison of Characteristics of Nonpoint Source Pollution from Separate and Combined Sewer System (합류식 월류수와 분류식 우수유출수의 비점오염물질 유출특성 비교)

  • Shin, Min Hwan;Jeon, Ji-Hong
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.1
    • /
    • pp.97-106
    • /
    • 2017
  • In this study, the characteristics of nonpoint source pollutant loads from separate sewer overflow (SSO) and combined sewer overflow (CSO) were evaluated during 2016 in Namyangju city, Korea. Five rainfall events were monitored during 2016 with ranging from 14.5 mm to 121.5 mm. The runoff ratio of CSO was higher than that of SSO because only design volume of maximum sanitary sewer ($1Q_h$) was transported and treated and $2Q_h$ was overflowed to waterbody during rainy day although combined sewer system was designed to transport $3Q_h$ to treatment system. The event mean concentrations (EMCs) and pollutant loads from CSO were higher than those from SSO. BOD and COD of CSO, and TOC and TN of SSO represented distinct first flush phenomena. The inadequate management in combined sewer system from which the untreated $2Q_h$ from CSO was overflowed to waterbody during rainy day could influence on high pollutant loads and first flushing. Treating $2Q_h$ from CSO, source control such as low impact development, and treating outflow from SSO were strongly recommended to control non-point source pollution in urban area.

Survey and Analyses of Farming Condition and Nonpoint Source Pollution in the Flood Control Area of the Multi-purpose Dams (다목적댐 홍수조절용지 내 경작실태 및 비점원오염부하량 조사 분석)

  • Chung Ji-Eun;Chung Sang-Ok
    • KCID journal
    • /
    • v.10 no.1
    • /
    • pp.44-52
    • /
    • 2003
  • This study surveyed farming condition and the effects of nonpoint source pollution loading by cultivating in the flood control area of multi-purpose dams. According to the multi-purpose dam management regulation, cultivation can be permitted between norma

  • PDF

L-THIA Modification and SCE-UA Application for Spatial Analysis of Nonpoit Source Pollution at Gumho River Basin (환경부 토지피복 중분류 적용을 위한 L-THIA 모델 수정과 SCE-UA연계적용에 의한 금호강유역 비점오염 분포파악)

  • Kim, Jung-Jin;Kim, Tae Dong;Choi, Dong Hyuk;Lim, Kyoung Jae;Engel, Bernard;Jeon, Ji-Hong
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.2
    • /
    • pp.311-321
    • /
    • 2009
  • Long-Term Hydrologic Impact Assessment (L-THIA) was modified to improve runoff and pollutant load prediction for Korean watersheds with changes in land use classification and event mean concentration produced from observed data in Korea. The L-THIA model was linked with SCE-UA, which is one of the global optimization techniques, to automatically calibrate direct runoff. Modified L-THIA model was applied to Gumho River Basins to analyze spatial distribution of nonpoint source pollution. The results of model calibration during 1991~2000 and validation during 1981~1990 for direct runoff represented high model efficiency of 0.76 for calibration and 0.86 for validation. As a results of spatial analysis of nonpoint source pollution, the BOD was mainly loaded from urban area but SS, TN, and TP from agricultural area which is mainly located along the stream. Modified L-THIA model improve its accuracy with minimum imput data and application efforts. From this study, we can find out the L-THIA model is very useful tool to predict direct runoff and pollutant loads from the watershed and spatial analysis of nonpoint source pollution.

Categorizing the Landcover Classes of the Satellite Imagery for the Management of the Nonpoint Source Pollutions (비점오염원 수문유출모형에 적용 가능한 위성영상의 토지피복 분류항목 설정)

  • Seo, Dong-Jo
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.11
    • /
    • pp.465-474
    • /
    • 2009
  • To measure the amount of nonpoint source pollution, some efforts are tried to utilize satellite imagery. But, as the factors for water models do not relate with the landcover categories for satellite imagery, satellite imagery are adapted to roughly classified thematic map or used only for the image interpretation. The purpose of this study is to establish the landcover categories of satellite imagery to relate with the water models. To establish the categories of the landcover for the water models, it was investigated to get main factors of water flow models for the nonpoint source pollution and to review the existing study and the classification system. For this result, it was convinced that the basic unit on the nonpoint source pollution, landcover coefficients of SCS Curve Number, the crop factor of Universal Soil Loss Equation, Manning's roughness coefficients are the useful parameters to extract information from the satellite imagery. After the setup the categories for the landcover classification, it was finally defined from the consultation of the water model specialist. Woopo wetland watershed was selected to the study area because it is a representative wetland in Korea and needs the management system for nonpoint source pollution. There were used Landsat ETM Plus and SPOT-5 satellite imagery to assess the result of the image classification.

The Impacts of Runoff the Nonpoint Source Pollution and Soil Physical Change for Mountainous Management Practice (고랭지 영농방법이 비점원오염 물질의 유출과 토양의 물리적 변화에 미치는 영향)

  • 최중대;강태영;김도찬
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.521-526
    • /
    • 1998
  • This study was initiated to build runoff plots, install soil and water quality monitoring systems and collect background data from the plots and soils to assess runoff the nonpoint source pollution and soil physical change in mountainous soils. Eleven 3 $\times$ 15 m runoff plots and monitoring systems were installed at a field of National Alpine Agricultural Experiment Station to monitor soil physical change, and discharge of nonpoint source pollutant. Corn and potato were cultivated under different fertilizer, tillage and residue cover treatments. The soil has a single-layered cluster structure that has a relatively good hydrologic properties and can adsorb a large amount of nutrient. 11 runoff plots were treated and monitored with respect to physical property of the soil, runoff and sediment discharge.

  • PDF

Grid Based Nonpoint Source Pollution Load Modelling

  • Niaraki, Abolghasem Sadeghi;Park, Jae-Min;Kim, Kye-Hyun;Lee, Chul-Yong
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.246-251
    • /
    • 2007
  • The purpose of this study is to develop a grid based model for calculating the critical nonpoint source (NPS) pollution load (BOD, TN, TP) in Nak-dong area in South Korea. In the last two decades, NPS pollution has become a topic for research that resulted in the development of numerous modeling techniques. Watershed researchers need to be able to emphasis on the characterization of water quality, including NPS pollution loads estimates. Geographic Information System (GIS) has been designed for the assessment of NPS pollution in a watershed. It uses different data such as DEM, precipitation, stream network, discharge, and land use data sets and utilizes a grid representation of a watershed for the approximation of average annual pollution loads and concentrations. The difficulty in traditional NPS modeling is the problem of identifying sources and quantifying the loads. This research is intended to investigate the correlation of NPS pollution concentrations with land uses in a watershed by calculating Expected Mean Concentrations (EMC). This work was accomplished using a grid based modelling technique that encompasses three stages. The first step includes estimating runoff grid by means of the precipitation grid and runoff coefficient. The second step is deriving the gird based model for calculating NPS pollution loads. The last step is validating the gird based model with traditional pollution loads calculation by applying statistical t-test method. The results on real data, illustrate the merits of the grid based modelling approach. Therefore, this model investigates a method of estimating and simulating point loads along with the spatially distributed NPS pollution loads. The pollutant concentration from local runoff is supposed to be directly related to land use in the region and is not considered to vary from event to event or within areas of similar land uses. By consideration of this point, it is anticipated that a single mean estimated pollutant concentration is assigned to all land uses rather than taking into account unique concentrations for different soil types, crops, and so on.

  • PDF