• Title/Summary/Keyword: Nonparametric Regression

Search Result 192, Processing Time 0.019 seconds

On the Selection of Bezier Points in Bezier Curve Smoothing

  • Kim, Choongrak;Park, Jin-Hee
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.6
    • /
    • pp.1049-1058
    • /
    • 2012
  • Nonparametric methods are often used as an alternative to parametric methods to estimate density function and regression function. In this paper we consider improved methods to select the Bezier points in Bezier curve smoothing that is shown to have the same asymptotic properties as the kernel methods. We show that the proposed methods are better than the existing methods through numerical studies.

Estimation of the joint conditional distribution for repeatedly measured bivariate cholesterol data using nonparametric copula (비모수적 코플라를 이용한 반복측정 이변량 자료의 조건부 결합 분포 추정)

  • Kwak, Minjung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.3
    • /
    • pp.689-700
    • /
    • 2016
  • We study estimation and inference of the joint conditional distributions of bivariate longitudinal outcomes using regression models and copulas. For the estimation of marginal models we consider a class of time-varying transformation models and combine the two marginal models using nonparametric empirical copulas. Regression parameters in the transformation model can be obtained as the solution of estimating equations and our models and estimation method can be applied in many situations where the conditional mean-based models are not good enough. Nonparametric copulas combined with time-varying transformation models may allow quite flexible modeling for the joint conditional distributions for bivariate longitudinal data. We apply our method to an epidemiological study of repeatedly measured bivariate cholesterol data.

Adaptive Regression by Mixing for Fixed Design

  • Oh, Jong-Chul;Lu, Yun;Yang, Yuhong
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.3
    • /
    • pp.713-727
    • /
    • 2005
  • Among different regression approaches, nonparametric procedures perform well under different conditions. In practice it is very hard to identify which is the best procedure for the data at hand, thus model combination is of practical importance. In this paper, we focus on one dimensional regression with fixed design. Polynomial regression, local regression, and smoothing spline are considered. The data are split into two parts, one part is used for estimation and the other part is used for prediction. Prediction performances are used to assign weights to different regression procedures. Simulation results show that the combined estimator performs better or similarly compared with the estimator chosen by cross validation. The combined estimator generates a similar risk to the best candidate procedure for the data.

Comparison of Nonparametric Function Estimation Methods for Discontinuous Regression Functions

  • Park, Dong-Ryeon
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.6
    • /
    • pp.1245-1253
    • /
    • 2010
  • There are two main approaches for estimating the discontinuous regression function nonparametrically. One is the direct approach, the other is the indirect approach. The major goal of the two approaches are different. The direct approach focuses on the overall good estimation of the regression function itself, whereas the indirect approach focuses on the good estimation of jump locations. Apparently, the two approaches are quite different in nature. Gijbels et al. (2007) argue that the comparison of two approaches does not make much sense and that it is even difficult to choose an appropriate criterion for comparisons. However, it is obvious that the indirect approach also has the regression curve estimate as the subsidiary result. Therefore it is necessary to verify the appropriateness of the indirect approach as the estimator of the discontinuous regression function itself. Park (2009a) compared the performance of two approaches through a simulation study. In this paper, we consider a more general case and draw some useful conclusions.

Population Pharmacokinetic Modeling of Vancomycin in Patients with Cancer (암환자에게 반코마이신의 집단약물동태학 모델연구)

  • 최준식;민영돈;범진필
    • YAKHAK HOEJI
    • /
    • v.43 no.2
    • /
    • pp.160-168
    • /
    • 1999
  • The purpose of this study was to determine pharmacokinetic parameters of vancomycin using peak and trough plasma level (PTL) and Bayesian analysis in 20 Korean normal volunteers, 16 gastric cancer and 12 lymphoma patients and also using the compartment model dependent (nonlinear least squares regression: NLSR) and compartment model independent (Lagrange) analysis in 10 ovarian cancer patients. Nonparametric expected maximum (NPEM) algorithm for calculation of the population pharmacokinetic parameters was used, and these parameters were applied for clinical pharmacokinetic parameters by Bayesian analysis. Vancomycin was administered as dose of 1.0 g every 12 hrs for 3 days by IV infusion over 60 minutes in normal volunteers, gastric cancer and lymphoma patients. Population pharmacokinetic parameters, K and Vd in gastric cancer and lymphoma patients using NPEM algorithm were $0.158{\pm}0.014{\;}hr^{-1},{\;}0.630{\pm}0.043{\;}L/kg{\;}and{\;}0.131{\pm}0.0261{\;}hr^{-1},{\;}0.631{\pm}0.089{\;}L/kg$ respectively. The K and Vd in gastric cancer and lymphoma patients using Bayesian analysis were $0.151{\pm}0.027,{\;}0.126{\pm}0.056{\;}hr^{-1}{\;}and{\;}0.62{\pm}0.105,{\;}0.63{\pm}0.095{\;}L/kg$. The K and Vd in ovarian cancer patient using the NLSR and Lagrange analysis were $0.109{\pm}0.008,{\;}0.126{\pm}0.012{\;}hr^{-1}{\;}and{\;} 0.76{\pm}0.08,{\;}0.69{\pm}0.19{\;}L/kg$, respectively. It is necessary for effective dosage regimen of vancomycin in cancer patients to use these population parameters.

  • PDF

A Graphical Method of Checking the Adequacy of Linear Systematic Component in Generalized Linear Models (일반화선형모형에서 선형성의 타당성을 진단하는 그래프)

  • Kim, Ji-Hyun
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.1
    • /
    • pp.27-41
    • /
    • 2008
  • A graphical method of checking the adequacy of a generalized linear model is proposed. The graph helps to assess the assumption that the link function of mean can be expressed as a linear combination of explanatory variables in the generalized linear model. For the graph the boosting technique is applied to estimate nonparametrically the relationship between the link function of the mean and the explanatory variables, though any other nonparametric regression methods can be applied. Through simulation studies with normal and binary data, the effectiveness of the graph is demonstrated. And we list some limitations and technical details of the graph.

Clinical Pharmacokinetics of Gentamicin in Gastrointestinal Surgical Patients (위장관 수술환자에서 겐타마이신의 임상약물동태)

  • Choi, Jun-Shik;Moon, Hong-Seog;Choi, In;Burm, Jin-Pil
    • YAKHAK HOEJI
    • /
    • v.40 no.1
    • /
    • pp.1-9
    • /
    • 1996
  • The purpose of this investigation was to determine pharmacokinetic parameters of gentamicin using nonlinear least square regression(NLSR) and Bayesian analysis in Korean normal volunteers and gastrointestinal surgical patients. Nonparametric expected maximum(NPEM) method for population pharmacokinetic parameters was used. Gentamicin was administered every 8 hours for 3 days by infusion over 30 minutes. The volume of distribution(V) and elimination rate constant(K) of gentamicin were $0.226{\pm}0.032,\;0.231{\pm}0.063L/Kg\;and\;0.357{\pm}0.024,\;0.337{\pm}0.041hr^{-1}$ for normal volunteers and gastrointestinal surgical patients using NLSR analysis. Population pharmacokinetic parameters, KS and VS were $0.00344{\pm}0.00049(hr{\cdot}ml/min/1.73m^2)^{-1}\;and\;0.214{\pm}0.0502L/Kg$ for gastrointestinal surgical patients using NPEM method. The V and K were $0.216{\pm}0.048L/Kg\;and\;0.336{\pm}0.043hr^{-1}$ for gastrointestinal surgical patients using Bayesian analysis. There were no differences in gentamicin pharmacokinetics between NLSR and Bayesian analysis in gastrointestinal surgical patient.

  • PDF

Wage Determinants Analysis by Quantile Regression Tree

  • Chang, Young-Jae
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.2
    • /
    • pp.293-301
    • /
    • 2012
  • Quantile regression proposed by Koenker and Bassett (1978) is a statistical technique that estimates conditional quantiles. The advantage of using quantile regression is the robustness in response to large outliers compared to ordinary least squares(OLS) regression. A regression tree approach has been applied to OLS problems to fit flexible models. Loh (2002) proposed the GUIDE algorithm that has a negligible selection bias and relatively low computational cost. Quantile regression can be regarded as an analogue of OLS, therefore it can also be applied to GUIDE regression tree method. Chaudhuri and Loh (2002) proposed a nonparametric quantile regression method that blends key features of piecewise polynomial quantile regression and tree-structured regression based on adaptive recursive partitioning. Lee and Lee (2006) investigated wage determinants in the Korean labor market using the Korean Labor and Income Panel Study(KLIPS). Following Lee and Lee, we fit three kinds of quantile regression tree models to KLIPS data with respect to the quantiles, 0.05, 0.2, 0.5, 0.8, and 0.95. Among the three models, multiple linear piecewise quantile regression model forms the shortest tree structure, while the piecewise constant quantile regression model has a deeper tree structure with more terminal nodes in general. Age, gender, marriage status, and education seem to be the determinants of the wage level throughout the quantiles; in addition, education experience appears as the important determinant of the wage level in the highly paid group.

Comparison of Jump-Preserving Smoothing and Smoothing Based on Jump Detector

  • Park, Dong-Ryeon
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.3
    • /
    • pp.519-528
    • /
    • 2009
  • This paper deals with nonparametric estimation of discontinuous regression curve. Quite number of researches about this topic have been done. These researches are classified into two categories, the indirect approach and direct approach. The major goal of the indirect approach is to obtain good estimates of jump locations, whereas the major goal of the direct approach is to obtain overall good estimate of the regression curve. Thus it seems that two approaches are quite different in nature, so people say that the comparison of two approaches does not make much sense. Therefore, a thorough comparison of them is lacking. However, even though the main issue of the indirect approach is the estimation of jump locations, it is too obvious that we have an estimate of regression curve as the subsidiary result. The point is whether the subsidiary result of the indirect approach is as good as the main result of the direct approach. The performance of two approaches is compared through a simulation study and it turns out that the indirect approach is a very competitive tool for estimating discontinuous regression curve itself.

Building Regression Models for Tire Design Factors (타이어 설계 인자들에 대한 회귀모형의 수립)

  • Park, Jeong-soo;Hwang, Hyun-sik;Cho, Wan Hyun
    • Journal of Korean Society for Quality Management
    • /
    • v.24 no.3
    • /
    • pp.94-110
    • /
    • 1996
  • Two regression models for explaining the tire performances (especially conering coefficients) by tire design and experimental factors are built. One is the ordinary regression model, and the explaining variables in the model are selected by a stepwise method. The other model is built by a modern nonparametric regression technique, called projection pursuit regression. Then two models are compared and combined, so that the relationship between the tire performances and design factors are well figured out. The optimal experimental design issue and future research ideas are also discussed.

  • PDF