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Abstract

There are two main approaches for estimating the discontinuous regression function nonparametrically. One

is the direct approach, the other is the indirect approach. The major goal of the two approaches are differ-

ent. The direct approach focuses on the overall good estimation of the regression function itself, whereas

the indirect approach focuses on the good estimation of jump locations. Apparently, the two approaches are

quite different in nature. Gijbels et al. (2007) argue that the comparison of two approaches does not make

much sense and that it is even difficult to choose an appropriate criterion for comparisons. However, it is

obvious that the indirect approach also has the regression curve estimate as the subsidiary result. Therefore

it is necessary to verify the appropriateness of the indirect approach as the estimator of the discontinuous

regression function itself. Park (2009a) compared the performance of two approaches through a simulation

study. In this paper, we consider a more general case and draw some useful conclusions.

Keywords: Discontinuous regression function, jump detector, jump-preserving smoothing, local M-

smoother.

1. Introduction

Suppose we want to estimate a discontinuous regression function nonparametrically. In this case,

the traditional smoothing technique such as the local polynomial regression is not statistically

consistent and we need quite different smoothing methods. Numerous research on the nonparametric

estimation of discontinuous regression functions exist that are classified into two categories. The first

approach is called the indirect approach and estimates the locations of the jump points first using

one of the various jump detection procedures and then estimates each smooth parts of the regression

function by separately applying the traditional smoothing technique. The second approach is called

the direct approach or jump-preserving smoothing and estimates the regression function directly

without detecting the jumps explicitly. Refer to Gijbels et al. (2007) and Park (2009a) for the

literature on both direct and indirect estimation methods.
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The main issue of the indirect approach is to obtain good estimates of jump locations. The estima-

tion of regression function itself is just a subsidiary result in the indirect approach. On the other

hand, the main issue of the direct approach is to obtain an overall good estimate of the regression

function. The two approaches are quite different in nature and Gijbels et al. (2007) argue that

the comparison of two approaches does not make sense and that it is even difficult to choose an

appropriate criterion for comparisons. However, even though the estimation of the regression func-

tion is not the main issue in the indirect approach, it is too obvious that the indirect approach also

produces the estimate of the regression function in the final step. Therefore, it is quite natural to

verify the appropriateness of the indirect approach as the estimator of the discontinuous regression

function.

Park (2009a) compared the performance of the two above-mentioned approaches as the estimator of

the discontinuous regression function itself through a simulation study. He chose the local constant

M-smoother proposed by Chu et al. (1998) as the direct approach and the modified difference kernel

estimator(DKE) proposed by Park (2008) as the indirect approach. Note that both local constant

M-smoother and modified DKE are based on the local constant regression.

In this paper, we extend the simulation study of Park (2009a). We include the procedures based on

the local linear regression for both the direct and indirect approach. It is well known that the local

linear regression has several good properties over the local constant regression. One of them is that

the local linear regression does not suffer from the boundary problem. Since the local smoothing

jump detection procedures use the one-sided kernel, every single design points can be considered

as a ‘boundary point’. In this respect, the jump detection procedure based on the local linear

regression is expected to have a considerable advantage. In addition, the local linear M-smoother

is expected to be superior to the local constant M-smoother according to the numerical results of

Rue et al. (2002).

The paper is organized as follows. In Section 2, we briefly describe the estimating procedures

considered in the simulation study. The procedures for the simulation study and the numerical

results are given in Section 3. Section 4 provides the concluding remarks.

2. Discontinuous Regression Function Estimation Procedures

There are many estimation procedures in both the direct and indirect approach. For a fair com-

parison, the estimation procedures are selected from each approach such that the corresponding

estimation procedures are based on the same smoothing technique. As the direct approach, the lo-

cal constant M-smoother by Chu et al. (1998) and the local linear M-smoother by Rue et al. (2002)

are selected, and as the indirect approach, the modified DKE by Park (2008) and the modified

difference of the two one-sided local linear kernel estimator(DLK) by Park (2009b) are selected.

Both the local constant M-smoother and modified DKE are based on the local constant regression,

and both the local linear M-smoother and modified DLK are based on the local linear regression.

In this section, we briefly describe the above-mentioned four estimation procedures.

Throughout the paper, we assume that {(xi, Yi), i = 1, . . . , n} are generated from the model (2.1).

Yi = m(xi) + ϵi, i = 1, . . . , n, (2.1)

where ϵi’s are independent and identically distributed with mean 0 and finite variance σ2, and the

design points xi are equally spaced. We also assume that the regression function m can be expressed
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by

m(x) = f(x) +

p∑
j=1

djI(x > sj), (2.2)

where f is a continuous function in the entire design interval, p is the number of jump points,

{sj , j = 1, . . . , p} are the jump positions, and {dj , j = 1, . . . , p} are jump magnitudes. The number

and the location of jumps are assumed to be unknown, and without a loss of generality we assume

that m is defined on the interval [0, 1].

2.1. The direct approach

For each xi, the local constant M-smoother estimate m̂M0(xi) is found by taking the local minimizer

with respect to α of

S(α, xi) =
n∑
j=1

KM
hM (xi − xj)L

M
gM (Yj − α) (2.3)

that is closest to Yi. Refer to Chu et al. (1998) for further details. As a trivial extension, the local

linear M-smoother estimate m̂M1(xi) is found by taking the local minimizer (α̂, β̂) of

S(α, β, xi) =

n∑
j=1

KM
hM

(xi − xj)L
M
gM (Yj − α− β(xi − xj)) (2.4)

over (α, β) such that α̂ is closest to Yi. Refer to Rue et al. (2002) for further details. Here KM

and LM are kernel functions, hM and gM are two bandwidths, KM
hM

(·) = h−1
M KM (·/hM ), and

LMgM (·) = g−1
M LM (·/gM ).

2.2. The indirect approach

The original version of both DKE and DLK can be used to detect the jump locations only when the

number of jump points are known. Refer to Qiu (2005) for further details. For the case of unknown

number of jump points, Park (2008) and Park (2009b) proposed the modified version of DKE and

DLK, respectively.

The modified DKE and DLK procedures are based on the following testing problem

H0 : m+(x) = m−(x), ∀ x ∈ [0, 1],

H1 : m+(x) ̸= m−(x), ∃ x ∈ [0, 1].

To state T0(x), the test statistic for the modified DKE and T1(x), the test statistic for the modified

DLK, the following notation will be used. Set

w
(l)
j1j2

=

n∑
i=1

(xi − x)j1Kj2
l

(
xi − x

g

)
, for j1 = 0, 1, 2 and j2, l = 1, 2.

g is a smoothing parameter and K1 and K2 are kernel functions. Here the support of K1 and K2

are [0, 1] and [−1, 0], respectively.
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Now T0(x) is defined as follows.

T0(x) =
MDKE(x)− c1m̂

′(x)√
c2σ̂2

, (2.5)

where

MDKE(x) = m̃+(x)− m̃−(x),

and

m̃+(x) =

n∑
i=1

YiK1

(
xi − x

g

)/ n∑
i=1

K1

(
xi − x

g

)
,

m̃−(x) =

n∑
i=1

YiK2

(
xi − x

g

)/ n∑
i=1

K2

(
xi − x

g

)
and

c1 =
w

(1)
11

w
(1)
01

− w
(2)
11

w
(2)
01

,

c2 =
w

(1)
02(

w
(1)
01

)2 +
w

(2)
02(

w
(2)
01

)2 .
T1(x) is also defined as follows.

T1(x) =
m̂+(x)− m̂−(x)√

Var (m̂+(x)− m̂−(x))
, (2.6)

where

m̂+(x) =

n∑
i=1

w
(1)
21 − w

(1)
11 (xi − x)

w
(1)
01 w

(1)
21 −

(
w

(1)
11

)2 YiK1

(
xi − x

g

)
,

m̂−(x) =

n∑
i=1

w
(2)
21 − w

(2)
11 (xi − x)

w
(2)
01 w

(2)
21 −

(
w

(2)
11

)2 YiK2

(
xi − x

g

)

and

Var (m̂+(x)− m̂−(x)) = V1 + V2,

where

Vi =

σ2

[(
w

(i)
21

)2
w

(i)
02 − 2w

(i)
21w

(i)
11w

(i)
12 +

(
w

(i)
11

)2
w

(i)
22

]
(
w

(i)
01w

(i)
21 −

(
w

(i)
11

)2)2 , i = 1, 2.

Under H0, the asymptotic distribution of both T0 and T1 is the standard normal distribution, so if

|Ti(x)| ≥ z1−α/2, i = 1, 2, for any x ∈ [0, 1] then we can reject H0 where z1−α/2 is the 100(1−α/2)th

percentile of the standard normal distribution.
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The jump detection procedures for the two above-mentioned methods are just identical. The can-

didates of jump locations are found by taking ŝj as the maximizer of |T•(x)| over the set Aj where

T• represents T0 or T1, and

Aj = [g, 1− g]−
j−1∪
k=1

[ŝk − g, ŝk + g] , (2.7)

for j = 1, . . . , r, and r is a positive integer which is far less than n. Then the estimated number of

jump points, p̂ is defined as the number of ŝj such that

|T•(ŝj)| ≥ z1−α
2
, j = 1, . . . , p̂, (2.8)

and then the estimated jump locations are given by ŝj , j = 1, . . . , p̂.

After the jump locations are estimated, traditional smoothing procedures with the bandwidth h are

applied to each Bj separately to obtain the discontinuous regression function estimate where

Bj = [ŝj−1, ŝj ], j = 1, . . . , p̂+ 1. (2.9)

Here ŝ0 = 0 and ŝp̂+1 = 1. For the modified DKE estimate, m̂DKE(x), local constant regression is

used, and local linear regression is used for the modified DLK estimate, m̂DLK(x).

3. Simulation

A simulation study was conducted to evaluate the finite sample properties of four estimation pro-

cedures described in Section 2. We considered the following discontinuous regression models:

m1(x) = cos(8π(0.5− x))I(x ≤ 0.5)− cos(8π(0.5− x))I(x > 0.5),

m2(x) =


−3x+ 1, x ≤ 0.3,

−3x+ 3− sin
(x− 0.3)π

0.2
, 0.3 < x ≤ 0.7,

x

2
+ 2.55, x > 0.7,

m3(x) = sin(5.5π) +

7∑
j=1

djI(x > sj),

where {sj}7j=1 = {0.2, 0.275, 0.55, 0.6, 0.7, 0.71, 0.825} and {dj}7j=1 = {4,−2,−1.75, 2,−3, 3,−1.75}.
The design points, xi’s were evenly spaced from 0 to 1 with a sample size of n = 200, and Yi’s were

generated from model (2.1) with ϵi ∼ N(0, 0.22).

The left panels of Figure 3.1 depict the three discontinuous regression functions. Note that m1 has

one jump point at the position 0.5 with jump size 2, and m2 has two jump points at the positions

0.3 and 0.7 with the same jump magnitude 2. The function m1 and m2 was considered in the

simulation study of Gijbels et al. (2007). The function m3 is a sine function broken by 7 jump

points at the positions 0.2, 0.275, 0.55, 0.6, 0.7, 0.71 and 0.825 with jump magnitudes 4, −2, −1.75,

2, −3, 3 and −1.75 respectively. This function was considered in Rue et al. (2002). The right panels

of Figure 3.1 present the typical data sets of each regression model along with the true regression

curves.

S(α, xi) of (2.3) and S(α, β, xi) of (2.4) are too complicated to find the closed form for their local

minimum, so numerical algorithm must be implemented. For the local constant M-smoother, Chu
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Figure 3.1. The true discontinuous regression functions and the typical data set of each model

et al. (1998) provide numerical algorithm based on Newton’s method to find the local minimum

closest to Yi. For the local linear M-smoother, Rue et al. (2002) suggest numerical algorithm that

considers all possible roots and then chooses the correct one based on Newton’s iteration algorithm

to find local minimizer α̂ of S(α, β, xi) that is closest to Yi. However, these methods are complicated

to program. Simpson et al. (1998) propose the iterative weighted least squares (IWLS) algorithm

for the local constant M-smoother, and Burt (2000) suggest the IWLS algorithm for the local linear

M-smoother. Although there is no guarantee that the IWLS algorithm will converge to the correct

local minimum, Simpson et al. (1998) and Burt (2000) found that using reasonable bandwidth and

choosing Yi as the starting value for the intercept parameter helps IWLS algorithm converge to

the correct root. Thus, we adopted the IWLS algorithm for both local constant and local linear

M-smoother.

For both kernel functionKM and LM of (2.3) and (2.4), we chose the Gaussian density function. For

the bandwidth gM , Burt (2000) recommends to take gM = 2.11σ. The number 2.11 is determined

by Asymptotic Relative Efficiency (ARE) calculation. For the estimator of σ2, we used the trimmed

mean version used in Wu and Chu (1993a), which is defined as σ̂2 =
∑n−ν
i=2+ν ξi/2(n−1−2ν) where

ξi denote the rearranged (Yi − Yi−1)
2 in ascending order, and we choose ν = 2. The bandwidth

hM works more like a traditional smoothing parameter, so the data adaptive bandwidth selection

methods like cross-validation or a plug-in rule can be used; however, the performance of these

methods for choosing hM has not been thoroughly investigated yet. Thus, we used several different

values of hM in the simulation.

For both the modified DKE and DLK procedure, the bandwidth g and h are also very important

factors. The bandwidth g is used for the jump detection procedure of (2.7), but limited study has
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Table 3.1. The smallest M̂ISE values along with their bandwidths based on 1000 replications

Direct Approach Indirect Approach

M0 M1 M-DKE M-DLK Ratio

hM M̂ISE hM M̂ISE h M̂ISE h M̂ISE

m1 0.01 0.0287 0.035 0.0232 0.02 0.0075 0.035 0.0062 3.71

m2 0.045 0.0226 0.06 0.0195 0.035 0.0049 0.055 0.0038 5.02

m3 0.015 0.0215 0.025 0.0185 0.01 0.0322 0.01 0.0297 0.62

been done about the selection method of g. Gijbels and Goderniaux (2004) propose the bootstrap

based data-driven bandwidth selection method; however, their method is complicated and it would

not be a good idea to use their method in practice. Thus, the choice of the proper bandwidth g is

problematic. However, according to the numerical investigation of Park (2008) and Park (2009a),

the larger bandwidth seems to produce the better results for both m̂DKE(x) and m̂DLK(x). We

can observe the same empirical evidence in both Wu and Chu (1993a) and Bowman and Pope

(2006). Without proper theoretical support, it is dangerous to generalize the empirical evidence,

but we cannot help selecting the value of g as large as possible since we do not have alternatives.

By the jump detection procedure of (2.7), the discontinuity points only in the interval [g, 1− g] can

be detected, so too large value of g should be avoided. We set g = 0.15 for both m̂DKE(x) and

m̂DLK(x) in the simulation; however, this choice is rather arbitrary.

The bandwidth h is used for local constant regression and local linear regression that are applied

to each Bj of (2.9). We could use the cross-validation procedure proposed by Wu and Chu (1993b);

however, we used several different values of h just like the case of hM .

For the kernel function of T0(x) and T1(x), we chose K1(x) = 1.5(1 − x2)I[0,1](x) and K2(x) =

K1(−x) for all x. The first derivative estimate of regression function m̂′(x) in T0(x) of (2.5) was

evaluated by the function glkerns of the package lokern in R. The computation of the local constant

regression estimate and the local linear regression estimate for each Bj of (2.9) was done by R

function locfit. The significance level for the procedure (2.8) was set to α = 0.05.

Since our main objective is to obtain good overall estimation of regression function m, the nat-

ural choice of the criterion for the comparison is the Mean Integrated Squared Error, MISE =

E[
∫ 0.9

0.1
(m̂(x) − m(x))2dx]. In order to avoid boundary effects, the MISE was calculated at the

interval [0.1,0.9]. For estimating a jump regression curve, the curve estimates also need to be

jump-preserving. To measure jump-preserving around a given jump point s, Gijbels et al. (2007)

proposed the use of the following local MISE:

MISEs = E

[∫ s+0.05

s−0.05

(m̂(x)−m(x))2dx

]
,

that measures the MISE between m̂(x) and m(x) in the interval [s− 0.05, s+ 0.05].

For m1 and m2, we estimated both MISE and local MISE. For m3, we did not estimate the local

MISE because some jump points are located too close together, so the local MISE does not have

much meaning as a criterion for comparison. We estimated both MISE and local MISE based on

1000 replications for various hM and h values, and report the smallest M̂ISE of each estimation

procedure along with the corresponding bandwidth in Table 3.1. We also report the smallest∑
s M̂ISEs of each estimation procedure along with the corresponding bandwidth in Table 3.2. In

these tables, ‘M0’ and ‘M1’ stand for the local constant M-smoother and the local linear M-smoother

respectively, and ‘Ratio’ is the ratio of the estimated (local) MISE of the direct approach to the
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Table 3.2. The smallest
∑

s M̂ISEs values along with their bandwidths based on 1000 replications

Direct Approach Indirect Approach

M0 M1 M-DKE M-DLK Ratio

hM
∑
s M̂ISEs hM

∑
s M̂ISEs h

∑
s M̂ISEs h

∑
s M̂ISEs

m1 0.01 0.0034 0.03 0.0031 0.025 0.0006 0.04 0.0007 4.76

m2 0.02 0.0064 0.025 0.0062 0.025 0.0013 0.055 0.0010 5.84

estimated (local) MISE of the indirect approach. In each approach the smaller estimated (local)

MISE was selected for computing the ratio.

Table 3.1 shows that the local linear based estimation methods have a smaller M̂ISE than the

local constant based estimation methods in both the direct and indirect approach; this is what we

expected. Because of the shapes of m1 to m3, the local linear fit should be preferable in all cases.

By the criterion of the overall good estimation of the regression function, the modified DLK pro-

cedure shows the best performance in both m1 and m2. The modified DLK procedure has over-

whelming superiority over the local linear M-smoother in these cases. However, for m3 the local

linear M-smoother shows better performance than the modified DLK procedure. Depending on the

shape of the true regression curves, we obtain quite different results. The function m3 has a lot of

jump points and some of them are located close together. When the adjacent jump points are too

close, the jump detection procedure of (2.7) cannot detect all of them. For the indirect approach,

the good estimation of jump locations is indispensable for getting a good estimation of regression

curves. Thus, it seems that the inferior performance of the indirect approach in m3 is caused by

the limitation of the jump detection procedure.

In Table 3.2, we can check the jump-preserving performance around the given jump points of each

method. Under the criterion of the jump-preserving property, it turns out that the local constant

fit has a competitive advantage over the local linear fit in both the direct and indirect approach.

This is a small surprise since the local constant fit is not preferable to the local linear fit in the

estimation of the overall regression function. We also can see that the indirect approach shows the

better performance than the direct approach in both m1 and m2.

4. Conclusion

The major goal of the indirect approach is not the estimation of the regression curve but the

estimation of jump locations; therefore, it is actually presumed that the direct approach performs

better than the indirect approach for obtaining the overall regression curve estimate. The point is

whether the subsidiary result of the indirect approach is as good as the main result of the direct

approach. According to the simulation results, it seems to be verified that the indirect approach is

competitive method for estimating the discontinuous regression curve itself. The indirect approach

outperforms the direct approach when there is only one jump point or the adjacent jump points are

located some distance away.

There are many existing methods in both the direct and indirect approach, but a thorough com-

parison of the two approaches as the estimator of the discontinuous regression function itself has

drawn limited attention. However, according to the simulation results, the indirect approach has a

competitive advantage over the direct approach in some situations. An extensive numerical study

(that includes all existing estimation procedures) is needed to form a more concrete conclusion.
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