• Title/Summary/Keyword: Nonlocal theory

Search Result 444, Processing Time 0.023 seconds

A review on dynamic characteristics of nonlocal porous FG nanobeams under moving loads

  • Abdulaziz Saud Khider;Ali Aalsaud;Nadhim M. Faleh;Abeer K. Abd;Mamoon A.A. Al-Jaafari;Raad M. Fenjan
    • Steel and Composite Structures
    • /
    • v.50 no.1
    • /
    • pp.15-24
    • /
    • 2024
  • This research presents dynamical reaction investigation of pore-dependent and nano-thickness beams having functional gradation (FG) constituents exposed to a movable particle. The nano-thickness beam formulation has been appointed with the benefits of refined high orders beam paradigm and nonlocal strain gradient theory (NSGT) comprising two scale moduli entitled nonlocality and strains gradient modulus. The graded pore-dependent constituents have been designed through pore factor based power-law relations comprising pore volumes pursuant to even or uneven pore scattering. Therewith, variable scale modulus has been thought-out until process a more accurate designing of scale effects on graded nano-thickness beams. The motion equations have been appointed to be solved via Ritz method with the benefits of Chebyshev polynomials in cosine form. Also, Laplace transform techniques help Ritz-Chebyshev method to obtain the dynamical response in time domain. All factors such as particle speed, pores and variable scale modulus affect the dynamical response.

EXITSENCE OF MILD SOLUTIONS FOR SEMILINEAR MIXED VOLTERRA-FREDHOLM FUNCTIONAL INTEGRODIFFERENTIAL EQUATIONS WITH NONLOCALS

  • LEE, HYUN MORK
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.28 no.3
    • /
    • pp.365-375
    • /
    • 2015
  • Of concern is the existence, uniqueness, and continuous dependence of a mild solution of a nonlocal Cauchy problem for a semilinear mixed Volterra-Fredholm functional integrodifferential equation. Our analysis is based on the theory of a strongly continuous semigroup of operators and the Banach fixed point theorem.

ON AN EQUATION CONNECTED WITH THE THEORY FOR SPREADING OF ACOUSTIC WAVE

  • Zikirov, O.S.
    • East Asian mathematical journal
    • /
    • v.27 no.1
    • /
    • pp.51-65
    • /
    • 2011
  • In the paper, we study questions on classical solvability of nonlocal problems for a third-order linear hyperbolic equation in a rectangular domain. The Riemann method is applied to the Goursat problem and solution is obtained in the integral form. Investigated problems are reduced to the uniquely solvable Volterra-type equation of second kind. Influence effects of coefficients at lowest derivatives on correctness of studied problems are detected.

EXISTENCE AND CONTROLLABILITY RESULTS FOR NONDENSELY DEFINED STOCHASTIC EVOLUTION DIFFERENTIAL INCLUSIONS WITH NONLOCAL CONDITIONS

  • Ni, Jinbo;Xu, Feng;Gao, Juan
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.1
    • /
    • pp.41-59
    • /
    • 2013
  • In this paper, we investigate the existence and controllability results for a class of abstract stochastic evolution differential inclusions with nonlocal conditions where the linear part is nondensely defined and satisfies the Hille-Yosida condition. The results are obtained by using integrated semigroup theory and a fixed point theorem for condensing map due to Martelli.

ON A CLASS OF NONCOOPERATIVE FOURTH-ORDER ELLIPTIC SYSTEMS WITH NONLOCAL TERMS AND CRITICAL GROWTH

  • Chung, Nguyen Thanh
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1419-1439
    • /
    • 2019
  • In this paper, we consider a class of noncooperative fourth-order elliptic systems involving nonlocal terms and critical growth in a bounded domain. With the help of Limit Index Theory due to Li [32] combined with the concentration compactness principle, we establish the existence of infinitely many solutions for the problem under the suitable conditions on the nonlinearity. Our results significantly complement and improve some recent results on the existence of solutions for fourth-order elliptic equations and Kirchhoff type problems with critical growth.

Numerical study for nonlocal vibration of orthotropic SWCNTs based on Kelvin's model

  • Hussain, Muzamal;Naeem, Muhammad N.;Tounsi, Abdelouahed
    • Advances in concrete construction
    • /
    • v.9 no.3
    • /
    • pp.301-312
    • /
    • 2020
  • This research deals with the study of the orthotropic vibrational features of single-walled carbon nanotubes according to Kelvin's model and to check the accuracy of the models, the results have been compared with earlier modeling/simulations. Obtaining rough approximations of the natural frequencies of CNTs using continuum equations are still a common procedure, even at high harmonics. The effects of different physical and material parameters on the fundamental frequencies are investigated for zigzag and chiral single-walled carbon nanotubes invoking Kelvin's theory. By using nonlocal Kelvin's model, the fundamental natural frequency spectra for two forms of single-walled carbon nanotubes (SWCNTs) have been calculated. The influence of frequencies with nonlocal parameters and bending rigidity are investigated in detail for these tubes. Computer software MATLAB is utilized for the frequencies of SWCNTs and current results shows a good stability with comparison of other studies.

Bending and stability analysis of size-dependent compositionally graded Timoshenko nanobeams with porosities

  • Bensaid, Ismail;Guenanou, Ahmed
    • Advances in materials Research
    • /
    • v.6 no.1
    • /
    • pp.45-63
    • /
    • 2017
  • In this article, static deflection and buckling of functionally graded (FG) nanoscale beams made of porous material are carried out based on the nonlocal Timoshenko beam model which captures the small scale influences. The exact position of neutral axis is fixed, to eliminate the stretching and bending coupling due to the unsymmetrical material change along the FG nanobeams thickness. The material properties of FG beam are graded through the thickness on the basis of the power-law form, which is modified to approximate the material properties with two models of porosity phases. By employing Hamilton's principle, the nonlocal governing equations of FG nanobeams are obtained and solved analytically for simply-supported boundary conditions via the Navier-type procedure. Numerical results for deflection and buckling of FG nanoscale beams are presented and validated with those existing in the literature. The influences of small scale parameter, power law index, porosity distribution and slenderness ratio on the static and stability responses of the FG nanobeams are all explored.

Nonlocal thermo-electro-mechanical vibration analysis of smart curved FG piezoelectric Timoshenko nanobeam

  • Ebrahimi, Farzad;Daman, Mohsen
    • Smart Structures and Systems
    • /
    • v.20 no.3
    • /
    • pp.351-368
    • /
    • 2017
  • To peruse the free vibration of curved functionally graded piezoelectric (FGP) nanosize beam in thermal environment, nonlocal elasticity theory is applied for modeling the nano scale effect. The governing equations are obtained via the energy method. Analytically Navier solution is employed to solve the governing equations for simply supported boundary conditions. Solving these equations enables us to estimate the natural frequency for curved FGP nanobeam under the effect of a uniform temperature change and external electric voltage. The results determined are verified by comparing the results by available ones in literature. The effects of various parameters such as nonlocality, uniform temperature changes, external electric voltage, gradient index, opening angle and aspect ratio of curved FGP nanobeam on the natural frequency are successfully discussed. The results revealed that the natural frequency of curved FGP nanobeam is significantly influenced by these effects.

Analytical investigation of the surface effects on nonlocal vibration behavior of nanosize curved beams

  • Ebrahimi, Farzad;Daman, Mohsen
    • Advances in nano research
    • /
    • v.5 no.1
    • /
    • pp.35-47
    • /
    • 2017
  • This paper deals with free vibration analysis of nanosize rings and arches with consideration of surface effects. The Gurtin-Murdach model is employed for incorporating the surface effect parameters including surface density, while the small scale effect is taken into consideration based on nonlocal elasticity theory of Eringen. An analytical Navier solution is presented to solve the governing equations of motions. Comparison between results of the present work and those available in the literature shows the accuracy of this method. It is explicitly shown that the vibration characteristics of the curved nanosize beams are significantly influenced by the surface density effects. Moreover, it is shown that by increasing the nonlocal parameter, the influence of surface density reduce to zero, and the natural frequency reaches its classical value. Numerical results are presented to serve as benchmarks for future analyses of nanosize rings and arches.

Assessment of various nonlocal higher order theories for the bending and buckling behavior of functionally graded nanobeams

  • Rahmani, O.;Refaeinejad, V.;Hosseini, S.A.H.
    • Steel and Composite Structures
    • /
    • v.23 no.3
    • /
    • pp.339-350
    • /
    • 2017
  • In this paper, various nonlocal higher-order shear deformation beam theories that consider the size dependent effects in Functionally Graded Material (FGM) beam are examined. The presented theories fulfill the zero traction boundary conditions on the top and bottom surface of the beam and a shear correction factor is not required. Hamilton's principle is used to derive equation of motion as well as related boundary condition. The Navier solution is applied to solve the simply supported boundary conditions and exact formulas are proposed for the bending and static buckling. A parametric study is also included to investigate the effect of gradient index, length scale parameter and length-to-thickness ratio (aspect ratio) on the bending and the static buckling characteristics of FG nanobeams.