DOI QR코드

DOI QR Code

Analytical investigation of the surface effects on nonlocal vibration behavior of nanosize curved beams

  • Ebrahimi, Farzad (Mechanical Engineering Department, Faculty of Engineering, Imam Khomeini International University) ;
  • Daman, Mohsen (Mechanical Engineering Department, Faculty of Engineering, Imam Khomeini International University)
  • Received : 2016.05.14
  • Accepted : 2016.11.21
  • Published : 2017.03.25

Abstract

This paper deals with free vibration analysis of nanosize rings and arches with consideration of surface effects. The Gurtin-Murdach model is employed for incorporating the surface effect parameters including surface density, while the small scale effect is taken into consideration based on nonlocal elasticity theory of Eringen. An analytical Navier solution is presented to solve the governing equations of motions. Comparison between results of the present work and those available in the literature shows the accuracy of this method. It is explicitly shown that the vibration characteristics of the curved nanosize beams are significantly influenced by the surface density effects. Moreover, it is shown that by increasing the nonlocal parameter, the influence of surface density reduce to zero, and the natural frequency reaches its classical value. Numerical results are presented to serve as benchmarks for future analyses of nanosize rings and arches.

Keywords

References

  1. Ansari, R., Mohammadi, V., Faghih Shojaei, M., Gholami, R. and Sahmani, S. (2014), "On the forced vibration analysis of Timoshenko nanobeams based on the surface stress elasticity theory", Compos. Part B: Eng., 60, 158-166. https://doi.org/10.1016/j.compositesb.2013.12.066
  2. Assadi, A. and Farshi, B. (2011), "Size dependent vibration of curved nanobeams and rings including surface energies", Physica E: Low-Dimen. Syst. Nanostruct., 43(4), 975-978. https://doi.org/10.1016/j.physe.2010.11.031
  3. Behnam, G. and Hasheminejad, S.M. (2011), "Surface effects on nonlinear free vibration of nanobeams", Compos. Part B: Eng., 42(4), 934-937. https://doi.org/10.1016/j.compositesb.2010.12.026
  4. Daulton, T.L., Bondi, K.S. and Kelton, K.F. (2010), "Nanobeam diffraction fluctuation electron microscopy technique for structural characterization of disordered materials application to $Al_{88-x}Y_7Fe_5Tix$ metallic glasses", Ultramicroscopy, 110(10), 1279-1289. https://doi.org/10.1016/j.ultramic.2010.05.010
  5. Ebrahimi, F. and Barati, M.R. (2016a), "A nonlocal higher-order refined magneto-electro-viscoelastic beam model for dynamic analysis of smart nanostructures", Int. J. Eng. Sci., 107, 183-196. https://doi.org/10.1016/j.ijengsci.2016.08.001
  6. Ebrahimi, F. and Barati, M.R. (2016b), "Buckling analysis of smart size-dependent higher order magnetoelectro-thermo-elastic functionally graded nanosize beams", J. Mech., 1-11.
  7. Ebrahimi, F. and Barati, M.R. (2016c), "Dynamic modeling of a thermo-piezo-electrically actuated nanosize beam subjected to a magnetic field", Appl. Phys. A, 122(4), 1-18.
  8. Ebrahimi, F. and Barati, M.R. (2016c), "Flexural wave propagation analysis of embedded S-FGM nanobeams under longitudinal magnetic field based on nonlocal strain gradient theory", Arab. J. Sci. Eng., 1-12.
  9. Ebrahimi, F. and Barati, M.R. (2016d), "Magneto-electro-elastic buckling analysis of nonlocal curved nanobeams", Eur. Phys. J. Plus, 131, 346. https://doi.org/10.1140/epjp/i2016-16346-5
  10. Ebrahimi, F. and Barati, M.R. (2016e), "Size-dependent thermal stability analysis of graded piezo-magnetic nanoplates on elastic medium subjected to various thermal environments", Appl. Phys. A, 122, 910. https://doi.org/10.1007/s00339-016-0441-9
  11. Ebrahimi, F. and Barati, M.R. (2016f), "Static stability analysis of smart magneto-electro-elastic heterogeneous nanoplates embedded in an elastic medium based on a four-variable refined plate theory", Smart Mater. Struct., 25(10), 105014. https://doi.org/10.1088/0964-1726/25/10/105014
  12. Ebrahimi, F. and Barati, M.R. (2016g), "Thermal environment effects on wave dispersion behavior of inhomogeneous strain gradient nanobeams based on higher order refined beam theory", J. Thermal Stress., 39(12), 1-12. https://doi.org/10.1080/01495739.2015.1120626
  13. Ebrahimi, F. and Barati, M.R. (2016h), "Vibration analysis of smart piezoelectrically actuated nano-beams subjected to magneto-electrical field in thermal environment", J. Vib. Control, 1077546316646239.
  14. Ebrahimi, F. and Barati, M.R. (2016i), "Wave propagation analysis of quasi-3D FG nanobeams in thermal environment based on nonlocal strain gradient theory", Appl. Phys. A, 122, 843. https://doi.org/10.1007/s00339-016-0368-1
  15. Ebrahimi, F. and Daman, M. (2016a), "An investigation of radial vibration modes of embedded doublecurved-nanobeam-systems", Cankaya Univ. J. Sci. Eng., 13(1), 058-079.
  16. Ebrahimi, F. and Daman, M. (2016b), "Investigating surface effects on thermomechanical behavior of embedded circular curved nanosize beams", J. Eng., 2016, 9848343.
  17. Ebrahimi, F., Barati, M.R. and Dabbagh, A. (2016a), "A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates", Int. J. Eng. Sci., 107, 169-182. https://doi.org/10.1016/j.ijengsci.2016.07.008
  18. Ebrahimi, F., Barati, M.R. and Haghi, P. (2016b), "Nonlocal thermo-elastic wave propagation in temperature-dependent embedded small-scaled nonhomogeneous beams", Eur. Phys. J. Plus, 131, 383. https://doi.org/10.1140/epjp/i2016-16383-0
  19. Ebrahimi, F., Barati, M.R. and Haghi, P. (2016c), "Thermal effects on wave propagation characteristics of rotating strain gradient temperature-dependent functionally graded nanoscale beams", J. Thermal Stress., 1-13
  20. Ebrahimi, F., Barati, M.R. and Dabbagh, A. (2016d), "Wave dispersion characteristics of axially loaded magneto-electro-elastic nanobeams", Appl. Phys. A, 122, 949. https://doi.org/10.1007/s00339-016-0465-1
  21. Eltaher, M.A., Emam, S.A. and Mahmoud. F.F. (2012), "Free vibration analysis of functionally graded sizedependent nanobeams", Appl. Math. Comput., 218(14), 7406-7420. https://doi.org/10.1016/j.amc.2011.12.090
  22. Gurtin, M.E. and Murdoch, A.I. (1978), "Surface stress in solids", Int. J. Solids Struct., 14(6), 431-440. https://doi.org/10.1016/0020-7683(78)90008-2
  23. Hosseini-Hashemi, S. and Nazemnezhad, R. (2013), "An analytical study on the nonlinear free vibration of functionally graded nanobeams incorporating surface effects", Compos. Part B: Eng., 52, 199-206. https://doi.org/10.1016/j.compositesb.2013.04.023
  24. Hu, B., Ding, Y., Chen, W., Kulkarni, D., Shen, Y., Tsukruk, V.V. and Wang, Z.L. (2010), "External-strain induced insulating phase transition in VO2 nanobeam and its application as flexible strain sensor", Adv. Mater., 22(45), 5134-5139. https://doi.org/10.1002/adma.201002868
  25. Kananipour, H., Mehdi, A. and Chavoshi, H. (2014), "Application of nonlocal elasticity and DQM to dynamic analysis of curved nanobeams", Latin Am. J. Solids Struct., 11(5), 848-853. https://doi.org/10.1590/S1679-78252014000500007
  26. Ke, L.L., Wang, Y.S. and Wang, Z.D. (2012), "Nonlinear vibration of the piezoelectric nanobeams based on the nonlocal theory", Compos. Struct., 94(6), 2038-2047. https://doi.org/10.1016/j.compstruct.2012.01.023
  27. Khater, M.E., Eltaher, M.A., Abdel-Rahman, E. and Yavuz, M. (2014), "Surface and thermal load effects on the buckling of curved nanowires", Eng. Sci. Technol., Int. J., 17(4), 279-283. https://doi.org/10.1016/j.jestch.2014.07.003
  28. Malekzadeh, P. and Shojaee, M. (2013), "Surface and nonlocal effects on the nonlinear free vibration of non-uniform nanobeams", Compos. Part B: Eng., 52, 84-92. https://doi.org/10.1016/j.compositesb.2013.03.046
  29. Murmu, T. and Adhikari, S. (2010), "Nonlocal transverse vibration of double-nanobeam-systems", J. Appl. Phys., 108(8), 083514. https://doi.org/10.1063/1.3496627
  30. Nazemnezhad, R., Salimi, M., Hosseini Hashemi, Sh. and Asgharifard Sharabiani, P. (2012), "An analytical study on the nonlinear free vibration of nanoscale beams incorporating surface density effects", Compos. Part B: Eng., 43(8), 2893-2897. https://doi.org/10.1016/j.compositesb.2012.07.029
  31. Rao, S.S. (2007), Vibration of Continuous Systems, John Wiley & Sons.
  32. Sahmani, S., Bahrami, M. and Ansari, R. (2014a), "Surface energy effects on the free vibration characteristics of postbuckled third-order shear deformable nanobeams", Compos. Struct., 116, 552-561. https://doi.org/10.1016/j.compstruct.2014.05.035
  33. Sahmani, S., Bahrami, M., Aghdam, M.M. and Ansari, R. (2014b), "Surface effects on the nonlinear forced vibration response of third-order shear deformable nanobeams", Compos. Struct., 118, 149-158. https://doi.org/10.1016/j.compstruct.2014.07.026
  34. Sharabiani, P.A. and Yazdi, M.R.H. (2013), "Nonlinear free vibrations of functionally graded nanobeams with surface effects", Compos. Part B: Eng., 45(1), 581-586. https://doi.org/10.1016/j.compositesb.2012.04.064
  35. Simsek, M. (2014), "Large amplitude free vibration of nanobeams with various boundary conditions based on the nonlocal elasticity theory", Compos. Part B: Eng., 56, 621-628. https://doi.org/10.1016/j.compositesb.2013.08.082
  36. Thai, H.T. (2012), "A nonlocal beam theory for bending, buckling, and vibration of nanobeams", Int. J. Eng. Sci., 52, 56-64. https://doi.org/10.1016/j.ijengsci.2011.11.011
  37. Wang, C.M. and Duan, W.H. (2008), "Free vibration of nanorings/arches based on nonlocal elasticity", J. Appl. Phys., 104(1), 014303. https://doi.org/10.1063/1.2951642
  38. Yan, Z. and Jiang, L. (2011), "Electromechanical response of a curved piezoelectric nanobeam with the consideration of surface effects", J. Phys. D: Appl. Phys., 44(36), 365301. https://doi.org/10.1088/0022-3727/44/36/365301

Cited by

  1. Wave propagation analysis of magnetostrictive sandwich composite nanoplates via nonlocal strain gradient theory 2018, https://doi.org/10.1177/0954406217748687
  2. Torsional vibration of nano-cone based on nonlocal strain gradient elasticity theory vol.132, pp.9, 2017, https://doi.org/10.1140/epjp/i2017-11688-0
  3. Nonlocal thermo-electro-mechanical vibration analysis of smart curved FG piezoelectric Timoshenko nanobeam vol.20, pp.3, 2017, https://doi.org/10.12989/sss.2017.20.3.351
  4. Surface effects on vibration and buckling behavior of embedded nanoarches vol.64, pp.1, 2017, https://doi.org/10.12989/sem.2017.64.1.001
  5. Nonlocal strain gradient-based vibration analysis of embedded curved porous piezoelectric nano-beams in thermal environment vol.20, pp.6, 2017, https://doi.org/10.12989/sss.2017.20.6.709
  6. Vibration analysis of carbon nanotubes with multiple cracks in thermal environment vol.6, pp.1, 2017, https://doi.org/10.12989/anr.2018.6.1.057
  7. Vibration analysis of graphene oxide powder-/carbon fiber-reinforced multi-scale porous nanocomposite beams: A finite-element study vol.134, pp.5, 2017, https://doi.org/10.1140/epjp/i2019-12594-1
  8. Theoretical analysis for static bending of circular Euler–Bernoulli beam using local and Eringen's nonlocal integral mixed model vol.99, pp.8, 2019, https://doi.org/10.1002/zamm.201800329
  9. Theoretical Analysis of Free Vibration of Microbeams under Different Boundary Conditions Using Stress-Driven Nonlocal Integral Model vol.20, pp.3, 2017, https://doi.org/10.1142/s0219455420500406
  10. Bending analysis of magneto-electro piezoelectric nanobeams system under hygro-thermal loading vol.8, pp.3, 2017, https://doi.org/10.12989/anr.2020.8.3.203
  11. Influences of surface effects on large deflections of nanomembranes with arbitrary shapes by the coupled BE-RBFs method vol.90, pp.5, 2020, https://doi.org/10.1007/s00419-020-01662-x
  12. The effect of negative Poisson’s ratio on the low-velocity impact response of an auxetic nanocomposite laminate beam vol.17, pp.1, 2017, https://doi.org/10.1007/s10999-020-09521-x
  13. Thermal buckling analysis of agglomerated multiscale hybrid nanocomposites via a refined beam theory vol.49, pp.3, 2021, https://doi.org/10.1080/15397734.2019.1692666
  14. Free vibration analysis of multi-scale hybrid nanocomposite plates with agglomerated nanoparticles vol.49, pp.4, 2017, https://doi.org/10.1080/15397734.2019.1692665
  15. Assessment of microstructure and surface effects on vibrational characteristics of public transportation vol.11, pp.1, 2021, https://doi.org/10.12989/anr.2021.11.1.101
  16. Wave propagation analysis of a spinning porous graphene nanoplatelet-reinforced nanoshell vol.31, pp.6, 2017, https://doi.org/10.1080/17455030.2019.1694729