References
- Ansari, R., Mohammadi, V., Faghih Shojaei, M., Gholami, R. and Sahmani, S. (2014), "On the forced vibration analysis of Timoshenko nanobeams based on the surface stress elasticity theory", Compos. Part B: Eng., 60, 158-166. https://doi.org/10.1016/j.compositesb.2013.12.066
- Assadi, A. and Farshi, B. (2011), "Size dependent vibration of curved nanobeams and rings including surface energies", Physica E: Low-Dimen. Syst. Nanostruct., 43(4), 975-978. https://doi.org/10.1016/j.physe.2010.11.031
- Behnam, G. and Hasheminejad, S.M. (2011), "Surface effects on nonlinear free vibration of nanobeams", Compos. Part B: Eng., 42(4), 934-937. https://doi.org/10.1016/j.compositesb.2010.12.026
-
Daulton, T.L., Bondi, K.S. and Kelton, K.F. (2010), "Nanobeam diffraction fluctuation electron microscopy technique for structural characterization of disordered materials application to
$Al_{88-x}Y_7Fe_5Tix$ metallic glasses", Ultramicroscopy, 110(10), 1279-1289. https://doi.org/10.1016/j.ultramic.2010.05.010 - Ebrahimi, F. and Barati, M.R. (2016a), "A nonlocal higher-order refined magneto-electro-viscoelastic beam model for dynamic analysis of smart nanostructures", Int. J. Eng. Sci., 107, 183-196. https://doi.org/10.1016/j.ijengsci.2016.08.001
- Ebrahimi, F. and Barati, M.R. (2016b), "Buckling analysis of smart size-dependent higher order magnetoelectro-thermo-elastic functionally graded nanosize beams", J. Mech., 1-11.
- Ebrahimi, F. and Barati, M.R. (2016c), "Dynamic modeling of a thermo-piezo-electrically actuated nanosize beam subjected to a magnetic field", Appl. Phys. A, 122(4), 1-18.
- Ebrahimi, F. and Barati, M.R. (2016c), "Flexural wave propagation analysis of embedded S-FGM nanobeams under longitudinal magnetic field based on nonlocal strain gradient theory", Arab. J. Sci. Eng., 1-12.
- Ebrahimi, F. and Barati, M.R. (2016d), "Magneto-electro-elastic buckling analysis of nonlocal curved nanobeams", Eur. Phys. J. Plus, 131, 346. https://doi.org/10.1140/epjp/i2016-16346-5
- Ebrahimi, F. and Barati, M.R. (2016e), "Size-dependent thermal stability analysis of graded piezo-magnetic nanoplates on elastic medium subjected to various thermal environments", Appl. Phys. A, 122, 910. https://doi.org/10.1007/s00339-016-0441-9
- Ebrahimi, F. and Barati, M.R. (2016f), "Static stability analysis of smart magneto-electro-elastic heterogeneous nanoplates embedded in an elastic medium based on a four-variable refined plate theory", Smart Mater. Struct., 25(10), 105014. https://doi.org/10.1088/0964-1726/25/10/105014
- Ebrahimi, F. and Barati, M.R. (2016g), "Thermal environment effects on wave dispersion behavior of inhomogeneous strain gradient nanobeams based on higher order refined beam theory", J. Thermal Stress., 39(12), 1-12. https://doi.org/10.1080/01495739.2015.1120626
- Ebrahimi, F. and Barati, M.R. (2016h), "Vibration analysis of smart piezoelectrically actuated nano-beams subjected to magneto-electrical field in thermal environment", J. Vib. Control, 1077546316646239.
- Ebrahimi, F. and Barati, M.R. (2016i), "Wave propagation analysis of quasi-3D FG nanobeams in thermal environment based on nonlocal strain gradient theory", Appl. Phys. A, 122, 843. https://doi.org/10.1007/s00339-016-0368-1
- Ebrahimi, F. and Daman, M. (2016a), "An investigation of radial vibration modes of embedded doublecurved-nanobeam-systems", Cankaya Univ. J. Sci. Eng., 13(1), 058-079.
- Ebrahimi, F. and Daman, M. (2016b), "Investigating surface effects on thermomechanical behavior of embedded circular curved nanosize beams", J. Eng., 2016, 9848343.
- Ebrahimi, F., Barati, M.R. and Dabbagh, A. (2016a), "A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates", Int. J. Eng. Sci., 107, 169-182. https://doi.org/10.1016/j.ijengsci.2016.07.008
- Ebrahimi, F., Barati, M.R. and Haghi, P. (2016b), "Nonlocal thermo-elastic wave propagation in temperature-dependent embedded small-scaled nonhomogeneous beams", Eur. Phys. J. Plus, 131, 383. https://doi.org/10.1140/epjp/i2016-16383-0
- Ebrahimi, F., Barati, M.R. and Haghi, P. (2016c), "Thermal effects on wave propagation characteristics of rotating strain gradient temperature-dependent functionally graded nanoscale beams", J. Thermal Stress., 1-13
- Ebrahimi, F., Barati, M.R. and Dabbagh, A. (2016d), "Wave dispersion characteristics of axially loaded magneto-electro-elastic nanobeams", Appl. Phys. A, 122, 949. https://doi.org/10.1007/s00339-016-0465-1
- Eltaher, M.A., Emam, S.A. and Mahmoud. F.F. (2012), "Free vibration analysis of functionally graded sizedependent nanobeams", Appl. Math. Comput., 218(14), 7406-7420. https://doi.org/10.1016/j.amc.2011.12.090
- Gurtin, M.E. and Murdoch, A.I. (1978), "Surface stress in solids", Int. J. Solids Struct., 14(6), 431-440. https://doi.org/10.1016/0020-7683(78)90008-2
- Hosseini-Hashemi, S. and Nazemnezhad, R. (2013), "An analytical study on the nonlinear free vibration of functionally graded nanobeams incorporating surface effects", Compos. Part B: Eng., 52, 199-206. https://doi.org/10.1016/j.compositesb.2013.04.023
- Hu, B., Ding, Y., Chen, W., Kulkarni, D., Shen, Y., Tsukruk, V.V. and Wang, Z.L. (2010), "External-strain induced insulating phase transition in VO2 nanobeam and its application as flexible strain sensor", Adv. Mater., 22(45), 5134-5139. https://doi.org/10.1002/adma.201002868
- Kananipour, H., Mehdi, A. and Chavoshi, H. (2014), "Application of nonlocal elasticity and DQM to dynamic analysis of curved nanobeams", Latin Am. J. Solids Struct., 11(5), 848-853. https://doi.org/10.1590/S1679-78252014000500007
- Ke, L.L., Wang, Y.S. and Wang, Z.D. (2012), "Nonlinear vibration of the piezoelectric nanobeams based on the nonlocal theory", Compos. Struct., 94(6), 2038-2047. https://doi.org/10.1016/j.compstruct.2012.01.023
- Khater, M.E., Eltaher, M.A., Abdel-Rahman, E. and Yavuz, M. (2014), "Surface and thermal load effects on the buckling of curved nanowires", Eng. Sci. Technol., Int. J., 17(4), 279-283. https://doi.org/10.1016/j.jestch.2014.07.003
- Malekzadeh, P. and Shojaee, M. (2013), "Surface and nonlocal effects on the nonlinear free vibration of non-uniform nanobeams", Compos. Part B: Eng., 52, 84-92. https://doi.org/10.1016/j.compositesb.2013.03.046
- Murmu, T. and Adhikari, S. (2010), "Nonlocal transverse vibration of double-nanobeam-systems", J. Appl. Phys., 108(8), 083514. https://doi.org/10.1063/1.3496627
- Nazemnezhad, R., Salimi, M., Hosseini Hashemi, Sh. and Asgharifard Sharabiani, P. (2012), "An analytical study on the nonlinear free vibration of nanoscale beams incorporating surface density effects", Compos. Part B: Eng., 43(8), 2893-2897. https://doi.org/10.1016/j.compositesb.2012.07.029
- Rao, S.S. (2007), Vibration of Continuous Systems, John Wiley & Sons.
- Sahmani, S., Bahrami, M. and Ansari, R. (2014a), "Surface energy effects on the free vibration characteristics of postbuckled third-order shear deformable nanobeams", Compos. Struct., 116, 552-561. https://doi.org/10.1016/j.compstruct.2014.05.035
- Sahmani, S., Bahrami, M., Aghdam, M.M. and Ansari, R. (2014b), "Surface effects on the nonlinear forced vibration response of third-order shear deformable nanobeams", Compos. Struct., 118, 149-158. https://doi.org/10.1016/j.compstruct.2014.07.026
- Sharabiani, P.A. and Yazdi, M.R.H. (2013), "Nonlinear free vibrations of functionally graded nanobeams with surface effects", Compos. Part B: Eng., 45(1), 581-586. https://doi.org/10.1016/j.compositesb.2012.04.064
- Simsek, M. (2014), "Large amplitude free vibration of nanobeams with various boundary conditions based on the nonlocal elasticity theory", Compos. Part B: Eng., 56, 621-628. https://doi.org/10.1016/j.compositesb.2013.08.082
- Thai, H.T. (2012), "A nonlocal beam theory for bending, buckling, and vibration of nanobeams", Int. J. Eng. Sci., 52, 56-64. https://doi.org/10.1016/j.ijengsci.2011.11.011
- Wang, C.M. and Duan, W.H. (2008), "Free vibration of nanorings/arches based on nonlocal elasticity", J. Appl. Phys., 104(1), 014303. https://doi.org/10.1063/1.2951642
- Yan, Z. and Jiang, L. (2011), "Electromechanical response of a curved piezoelectric nanobeam with the consideration of surface effects", J. Phys. D: Appl. Phys., 44(36), 365301. https://doi.org/10.1088/0022-3727/44/36/365301
Cited by
- Wave propagation analysis of magnetostrictive sandwich composite nanoplates via nonlocal strain gradient theory 2018, https://doi.org/10.1177/0954406217748687
- Torsional vibration of nano-cone based on nonlocal strain gradient elasticity theory vol.132, pp.9, 2017, https://doi.org/10.1140/epjp/i2017-11688-0
- Nonlocal thermo-electro-mechanical vibration analysis of smart curved FG piezoelectric Timoshenko nanobeam vol.20, pp.3, 2017, https://doi.org/10.12989/sss.2017.20.3.351
- Surface effects on vibration and buckling behavior of embedded nanoarches vol.64, pp.1, 2017, https://doi.org/10.12989/sem.2017.64.1.001
- Nonlocal strain gradient-based vibration analysis of embedded curved porous piezoelectric nano-beams in thermal environment vol.20, pp.6, 2017, https://doi.org/10.12989/sss.2017.20.6.709
- Vibration analysis of carbon nanotubes with multiple cracks in thermal environment vol.6, pp.1, 2017, https://doi.org/10.12989/anr.2018.6.1.057
- Vibration analysis of graphene oxide powder-/carbon fiber-reinforced multi-scale porous nanocomposite beams: A finite-element study vol.134, pp.5, 2017, https://doi.org/10.1140/epjp/i2019-12594-1
- Theoretical analysis for static bending of circular Euler–Bernoulli beam using local and Eringen's nonlocal integral mixed model vol.99, pp.8, 2019, https://doi.org/10.1002/zamm.201800329
- Theoretical Analysis of Free Vibration of Microbeams under Different Boundary Conditions Using Stress-Driven Nonlocal Integral Model vol.20, pp.3, 2017, https://doi.org/10.1142/s0219455420500406
- Bending analysis of magneto-electro piezoelectric nanobeams system under hygro-thermal loading vol.8, pp.3, 2017, https://doi.org/10.12989/anr.2020.8.3.203
- Influences of surface effects on large deflections of nanomembranes with arbitrary shapes by the coupled BE-RBFs method vol.90, pp.5, 2020, https://doi.org/10.1007/s00419-020-01662-x
- The effect of negative Poisson’s ratio on the low-velocity impact response of an auxetic nanocomposite laminate beam vol.17, pp.1, 2017, https://doi.org/10.1007/s10999-020-09521-x
- Thermal buckling analysis of agglomerated multiscale hybrid nanocomposites via a refined beam theory vol.49, pp.3, 2021, https://doi.org/10.1080/15397734.2019.1692666
- Free vibration analysis of multi-scale hybrid nanocomposite plates with agglomerated nanoparticles vol.49, pp.4, 2017, https://doi.org/10.1080/15397734.2019.1692665
- Assessment of microstructure and surface effects on vibrational characteristics of public transportation vol.11, pp.1, 2021, https://doi.org/10.12989/anr.2021.11.1.101
- Wave propagation analysis of a spinning porous graphene nanoplatelet-reinforced nanoshell vol.31, pp.6, 2017, https://doi.org/10.1080/17455030.2019.1694729