• 제목/요약/키워드: Nonlinear wave equations

검색결과 168건 처리시간 0.026초

비선형성을 고려한 탄성 다공성 재질의 음향학적 모델링 (Nonlinear Acoustical Modeling of Poroelastic Materials)

  • 김진섭;이수일;강영준
    • 소음진동
    • /
    • 제9권6호
    • /
    • pp.1218-1226
    • /
    • 1999
  • In this paper, the extended Biot's semilinear model was developed. Combining the extended Biot model with the dynamic equation yields the nonlinear wave equation in poproelastic sound absorbing materials. Both perturbation and matching techniques are used to find solutions for nonlinear wave equations. By comparing results between linear and nonlinear wave solutions, characteristics of nonlinear waves in poroelastic sound abosrbing materials have been studied. Nonlinear waves were found to be attenuated faster than the linear ones. A maximum amplitude of the nonlinear wave occurred near its surface boundaries and decay quickly with distance from the surface. It has also been found that, if the amplitudes of linear waves are known at the surface boundaries, those of nonlinear ones can be determined. This will be the basis of finding effects of nonlinearity on the absorption coefficient and the transmission loss.

  • PDF

디지털 파랑 수조 내에서의 비선형 파랑 운동의 수치시뮬레이션 (NUMERICAL SIMULATIONS OF FULLY NONLINEAR WAVE MOTIONS IN A DIGITAL WAVE TANK)

  • 박종천;김경성
    • 한국전산유체공학회지
    • /
    • 제11권4호
    • /
    • pp.90-100
    • /
    • 2006
  • A digital wave tank (DWT) simulation technique has been developed by authors to investigate the interactions of fully nonlinear waves with 3D marine structures. A finite-difference/volume method and a modified marker-and-cell (MAC) algorithm have been used, which are based on the Navier-Stokes (NS) and continuity equations. The fully nonlinear kinematic free-surface condition is implemented by the marker-density function (MDF) technique or the Level-Set (LS) technique developed for one or two fluid layers. In this paper, some applications for various engineering problems with free-surface are introduced and discussed. It includes numerical simulation of marine environments by simulation equipments, fully nonlinear wave motions around offshore structures, nonlinear ship waves, ship motions in waves and marine flow simulation with free-surface. From the presented simulations, it seems that the developed DWT simulation technique can handle various engineering problems with free-surface and reliably predict hydrodynamic features due to the fully-nonlinear wave motions interacting with such marine structures.

NEW ANALYTIC APPROXIMATE SOLUTIONS TO THE GENERALIZED REGULARIZED LONG WAVE EQUATIONS

  • Bildik, Necdet;Deniz, Sinan
    • 대한수학회보
    • /
    • 제55권3호
    • /
    • pp.749-762
    • /
    • 2018
  • In this paper, the new optimal perturbation iteration method has been applied to solve the generalized regularized long wave equation. Comparing the new analytic approximate solutions with the known exact solutions reveals that the proposed technique is extremely accurate and effective in solving nonlinear wave equations. We also show that,unlike many other methods in literature, this method converges rapidly to exact solutions at lower order of approximations.

비선형 천수방정식의 보정차분기법 (A Note on the Modified Scheme for Nonlinear Shallow-Water Equations)

  • 조용식
    • 한국해안해양공학회지
    • /
    • 제11권4호
    • /
    • pp.197-200
    • /
    • 1999
  • 비선형 천수방정식을 해석하기 위하여 보정 leap-frog 기법을 확장하였다. 차분화 과정에서 발생하는 수치분산을 조정하여 Boussinesq 방정식의 분산을 대치하도록 하였다. 새로이 개발된 보정 leap-frog 기법을 이용하여 일정수심 및 경사면을 진행하는 고립파를 모의하였다. 새로운 확장기법에 의해 계산된 자유수면변위는 기존의 해석해 및 수치해와 잘 일치한다.

  • PDF

THE STUDY OF THE SYSTEM OF NONLINEAR WAVE EQUATIONS

  • Jung, Tacksun;Choi, Q-Heung
    • 충청수학회지
    • /
    • 제20권3호
    • /
    • pp.261-267
    • /
    • 2007
  • We show the existence of the positive solution for the system of the following nonlinear wave equations with Dirichlet boundary conditions $$u_{tt}-u_{xx}+av^+=s{\phi}_{00}+f$$, $$v_{tt}-v_{xx}+bu^+=t{\phi}_{00}+g$$, $$u({\pm}\frac{\pi}{2},t)=v({\pm}\frac{\pi}{2},t)=0$$, where $u_+=max\{u,0\}$, s, $t{\in}R$, ${\phi}_{00}$ is the eigenfunction corresponding to the positive eigenvalue ${\lambda}_{00}=1$ of the eigenvalue problem $u_{tt}-u_{xx}={\lambda}_{mn}u$ with $u({\pm}\frac{\pi}{2},t)=0$, $u(x,t+{\pi})=u(x,t)=u(-x,t)=u(x,-t)$ and f, g are ${\pi}$-periodic, even in x and t and bounded functions in $[-\frac{\pi}{2},\frac{\pi}{2}]{\times}[-\frac{\pi}{2},\frac{\pi}{2}]$ with $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}f{\phi}_{00}=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}g{\phi}_{00}=0$.

  • PDF

수치파 수조를 이용한 설계파 생성에 관한 연구 (A Study on the Generation for the Design Waves with a Numerical Wave Tank)

  • 정성재;안희춘;신종근;최진
    • 대한조선학회논문집
    • /
    • 제42권3호
    • /
    • pp.205-211
    • /
    • 2005
  • In this study, a new numerical procedure for the generation of a nonlinear tailored group of waves is presented. The procedure is based on the transient wave group technique. In order to integrate the nonlinearity during the wave propagation in the computational method, the Navier-Stokes equations are applied as governing equations. The governing equations are discretized by finite volume approximation. The deformation of the free water surface in each time step is pursued with a moving grid. A two-dimensional, numerical wave tank for the simulation of the wave propagation is developed and tested in detail. The numeric results are compared first with analytical wave theories and with measurements, in order to examine the correctness of the numerical wave tank. Wave surface elevation and associated fields of velocity and pressure are numerically computed and compared with measurements. Very good agreements show up.

흐름의 영향을 받는 파랑 그룹의 비선형 집중 (Nonlinear Focusing Wave Group on Current)

  • 쥬리언 투보울;에핌 페리높스키;크리스티안 카리프
    • 한국해안해양공학회지
    • /
    • 제19권3호
    • /
    • pp.222-227
    • /
    • 2007
  • 심해에서 생성된 최극해파가 파랑과 상호작용하는 현상에 대한 연구를 수행하였다. 이러한 파랑은 분산집중을 이용하여 산정하였다. 이러한 과정은 선형 및 비선형 방정식의 해를 구하여 얻을 수 있다. 상호작용에서 비선형성의 역할을 강조하였다.

Development of Multidirectional Nonlinear Numerical Wave Tank by Naoe-FOAM-SJTU Solver

  • Cao, Hong-Jian;Wan, De-Cheng
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제1권1호
    • /
    • pp.14-24
    • /
    • 2015
  • A three-dimensional multidirectional nonlinear numerical wave tank (NWT) based on the Navier-Stokes equations and the Finite Volume Method (FVM) is developed by using the two-phase hydrodynamic flow solver naoe-FOAM-SJTU based on the open source toolbox OpenFOAM. The free surface is capturing with the Volume Of Fluids (VOF). The directional wave including Stokes wave, solitary wave and nonlinear wave are simulated and verified. The multi-directional waves are also simulated with particular wave spectral such as JONSWAP and wave directional spreading function. The obtained numerical results show the capability of the solver to generate different type of multidirectional nonlinear waves accurately. Meanwhile, it implies that the presented NWT can easily extend to model the wave-structures interactions, which will be great help to the offshore structures design.

Development of Multidirectional Nonlinear Numerical Wave Tank by Naoe-FOAM-SJTU Solver

  • Cao, Hong-Jian;Wan, De-Cheng
    • International Journal of Ocean System Engineering
    • /
    • 제4권1호
    • /
    • pp.49-56
    • /
    • 2014
  • A three-dimensional multidirectional nonlinear numerical wave tank (NWT) based on the Navier-Stokes equations and the Finite Volume Method (FVM) is developed by using the two-phase hydrodynamic flow solver naoe-FOAM-SJTU based on the open source toolbox OpenFOAM. The free surface is capturing with the Volume Of Fluids (VOF). The directional wave including Stokes wave, solitary wave and nonlinear wave are simulated and verified. The multi-directional waves are also simulated with particular wave spectral such as JONSWAP and wave directional spreading function. The obtained numerical results show the capability of the solver to generate different type of multidirectional nonlinear waves accurately. Meanwhile, it implies that the presented NWT can easily extend to model the wave-structures interactions, which will be great help to the offshore structures design.

An Analytical Solution for Regular Progressive Water Waves

  • Shin, JangRyong
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제1권3호
    • /
    • pp.157-167
    • /
    • 2015
  • In order to provide simple and accurate wave theory in design of offshore structure, an analytical approximation is introduced in this paper. The solution is limited to flat bottom having a constant water depth. Water is considered as inviscid, incompressible and irrotational. The solution satisfies the continuity equation, bottom boundary condition and non-linear kinematic free surface boundary condition exactly. Error for dynamic condition is quite small. The solution is suitable in description of breaking waves. The solution is presented with closed form and dispersion relation is also presented with closed form. In the last century, there have been two main approaches to the nonlinear problems. One of these is perturbation method. Stokes wave and Cnoidal wave are based on the method. The other is numerical method. Dean's stream function theory is based on the method. In this paper, power series method was considered. The power series method can be applied to certain nonlinear differential equations (initial value problems). The series coefficients are specified by a nonlinear recurrence inherited from the differential equation. Because the non-linear wave problem is a boundary value problem, the power series method cannot be applied to the problem in general. But finite number of coefficients is necessary to describe the wave profile, truncated power series is enough. Therefore the power series method can be applied to the problem. In this case, the series coefficients are specified by a set of equations instead of recurrence. By using the set of equations, the nonlinear wave problem has been solved in this paper.